EVOLUTION EQUATIONS OF PARABOLIC TYPE

A. Yagi

1. INTRODUCTION

The aim of this talk is to report some recent results concerning linear and nonlinear evolution equations of parabolic type in Banach spaces.

Let

(L)
$$du/dt + A(t)u = f(t) , 0 < t \leq T$$

(Q)
$$du/dt + A(t,u)u = f(t,u)$$
, $0 < t \le T$

be linear and quasilinear evolution equations of parabolic type in a Banach space X respectively. By "parabolic type" we mean that A(t)and A(t,u) are all the infinitesimal generators of analytic linear semigroups on X (we do not necessarily assume that the domains of the operators A(t) and A(t,u) are dense subspaces of X, so the semigroups generated by them may not be of class C_0). The domains D(A(t))and D(A(t,u)) of A(t) and A(t,u) are allowed to vary with t or u, but it is assumed that there exists a number $0 < h \leq 1$ such that the domains $D(A(t)^h)$ and $D(A(t,u)^h)$ of the fractional powers $A(t)^h$ and $A(t,u)^h$ respectively are independent of t and u.

In Section 2 we shall study the linear equation (L) by constructing a fundamental solution (evolution operator) for (L).

In Section 3 we shall consider the initial value problem