OPERATORS WHICH HAVE AN H_o FUNCTIONAL

CALCULUS

Alan McIntosh

1. INTRODUCTION

An operator T in a Hilbert space \mathscr{H} is said to be of type ω if the spectrum is contained in the sector $S_{\omega} = \{\zeta \in \mathbb{C} \mid |\arg\zeta| \leq \omega\}$ and the resolvent satisfies a bound of the type $\|(T-\zeta I)^{-1}\| \leq C_{\mu} |\zeta|^{-1}$ for all ζ with $|\arg\zeta| \geq \mu$ and all $\mu > \omega$. Let us suppose for now that T is one-one with dense range.

Such an operator has a fractional power T^{s} and, if $\omega < \pi/2$, generates an analytic semi-group $\{\exp(-tT)\}$. See [3] for details. However it may or may not happen that it generates a C^{0} -group $\{T^{is} \mid s \in \mathbb{R}\}$ of bounded operators. It was shown by Yagi that the operators T for which $T^{is} \in \mathcal{L}(\mathcal{X})$ are precisely those for which the domains of the fractional powers of T (and of T^{*}) are the complex interpolation spaces between \mathcal{X} and $\mathcal{D}(T)$ (and between \mathcal{X} and $\mathcal{D}(T^{*})$). They are also precisely those operators for which T and T^{*} satisfy quadratic estimates [4].

It is shown in this paper that another equivalent property is the existence of an $H_{\infty}(S^0_{\mu})$ functional calculus for $\mu > \omega$ (where S^0_{μ} denotes the interior of S_{μ}).

In writing up this paper it seemed useful to have a precise definition of the operators f(T) for functions which are analytic (but not necessarily bounded) on S^0_{μ} and for operators T which do not necessarily satisfy quadratic estimates. Such a definition is given in section 5, where it is shown in what sense formulae of the form (fg)(T) = f(T)g(T) hold. It appears that the basic properties of the