CENTRALLY TRIVIAL AUTOMORPHISMS

OF C*-ALGEBRAS

John Phillips

We continue our study of central sequences in, and automorphisms of separable C*-algebras begun in [7]. We would like to attempt, as far as possible, to follow the plan of attack developed by A. Connes in [2,3] for von Neumann algebras. Unfortunately, very few of the general ideas survive in the C*-algebra setting. The main reason for this is the overabundance of nontrivial central sequences in a general separable C*-algebra. Despite this, we are able to sufficiently analyze some large classes of C*-algebras so that those automorphisms which behave trivially on central sequences can be computed. Complete proofs and more detailed examples will appear elsewhere.

§ 1. Preliminaries

Let A denote a separable unital C*-algebra over the complex numbers. Let AutA denote the group of all *-automorphisms of A , and InnA the normal subgroup of all inner automorphisms. Let $\epsilon: AutA \to AutA/InnA = OutA \ \ be the quotient.$

A central sequence in A is a bounded sequence $\{x_n\}$ of elements of A with the property that $[x_n,a]=x_na-ax_n\to 0$ in norm for each $a\in A$. A uniformly central sequence is a bounded sequence $\{x_n\}$ for which the operators (on A) $adx_n(\cdot)=[x_n,\cdot]$ converge to 0 in norm. A central sequence $\{x_n\}$ is called <u>hypercentral</u> if $||[x_n,y_n]||\to 0$ for every central sequence $\{y_n\}$ of A. A central sequence $\{x_n\}$ is called <u>trivial</u> if there is a sequence $\{\lambda_n\}$ of central elements in A so that $||x_n-\lambda_n||\to 0$. It is evident that any trivial sequence is uniformly central and any uniformly central