THE CHARACTERISTIC FUNCTION OF A UNIFORMLY CONTINUOUS SEMIGROUP

Brian W. McEnnis

1. INTRODUCTION

Let T(t) be a uniformly continuous one-parameter semigroup of operators on a separable Hilbert space \mathcal{H} . Thus, for each $t \geq 0$, T(t) is a bounded operator on \mathcal{H} , $T(t_1)T(t_2) = T(t_1+t_2)$ for each t_1 , $t_2 \geq 0$, T(0) = I, and $||T(t) - I|| \rightarrow 0$ as $t \rightarrow 0^+$. Such a semigroup possesses a bounded infinitesimal generator A, defined as the limit (in norm) of $t^{-1}(T(t) - I)$, as $t \rightarrow 0^+$. We can then write $T(t) = \exp{(At)}$. (See, for example, [2], [4], [5], [7], [8], [9].)

As in [2], we define the following bounded operators on \mathcal{H} : $G = A + A^*, \quad Q = |G|^{1/2}, \quad \text{and} \quad J = \text{sgn (-G)} \quad \text{(this is the operator S in [2])}.$ We have the relations

$$(1.1) \qquad JQ^2 = -G,$$

$$\frac{d}{dt} (T(t)T(t)^*) = T(t)GT(t)^*, \quad \text{and}$$

$$\frac{d}{dt} (T(t)^*T(t)) = T(t)^*GT(t) .$$

A Krein space $\mathcal G$ is defined by taking $\mathcal G$ to be the space $J\mathcal H_{r}$ equipped with the indefinite inner product

$$(1.2) [x,y] = (Jx,y) x, y \in G$$