DISINTEGRATION OF MEASURES ACCORDING TO THE DIMENSION AND ITS RELATION WITH RANDOM COVERINGS AND MULTIPLICATIVE CHAOS

Jean-Pierre Kahane

1. THE DISINTEGRATION THEOREM

Suppose we are given a locally compact metric or pseudometric space (T,dist) (here pseudometric means

 $dist(x,y) \leq K(dist(x,z)+dist(z,y))$

and metric is the case K = 1). A good example is \mathbb{R}^d with the euclidean distance. We write $M^+(T)$ for the set of all positive and bounded Radon measures on T, $M^+_{\alpha}(T)$ for the subset of $M^+(T)$ which consists of α -Lipschitz measures, that is, measures σ which satisfy

 $\sigma(B) \leq C_{\sigma}(\text{diam } B)^{\alpha}$

for all balls B.

Given a Borel set B in T we consider the measures $\sigma \in M^+(T)$ carried by B (that is, $\sigma(B) = \sigma(T)$) and we write $\sigma \in M^+(B)$. We define $M^+_{\alpha}(B)$ in the same way. The capacitary (or Polya-Szegö) dimension of B is the supremum of the $\alpha > 0$ such that $M^+_{\alpha}(B) \neq \{0\}$. If T is \mathbb{R}^d with the usual metric the capacitarian dimension is the