LIE GROUP IMBEDDINGS OF THE FOURIER TRANSFORM AND & NEW FAMILY OF UNCERTAINTY PRINCIPLES

David Mustard

1. INTRODUCTION

The one-dimensional Fourier-Plancherel operator F: $L^2\left(R\right){\to}L^2\left(R\right)$, defined formally by

(1.1) (Ff) (y) =
$$\hat{f}(y) = (2\pi)^{-1/2} \int_{\mathbb{R}} e^{-iyx} f(x) dx$$
,

is a unitary operator; that is

(1.2)
$$\langle f, g \rangle = \langle f, g \rangle$$
 and $||f|| = ||f|$

where

(1.3)
$$\langle f,g \rangle = (2\pi)^{-1/2} \int_{\mathbb{R}} \overline{f}(x)g(x) dx \text{ and } ||f|| = \langle f,f \rangle^{1/2};$$

also $F^4 = I$, the identity operator, so the integer powers of F form a cyclic group of order 4 [5]. It is natural to contemplate imbedding this finite discrete group of unitary operators in a continuous one. Condon derived a one-parameter group of integral operators $\{F_{\theta}\}$ ($\theta \in T$, where $T = R/2\pi Z$) with the appropriate properties in 1937 [2] and Bargmann derived a corresponding one-parameter group for the d-dimensional Fourier operator in 1961 [1]. I have shown [11] the construction of infinitely many distinct imbeddings of the d-dimensional