SINGULAR INTEGRALS ON BMO

Douglas S. Kurtz

Let f be a locally integrable function on ${\rm I\!R}^n.$ We say f has bounded mean oscillation, $f\in BMO$, if

(1)
$$\sup_{\mathbf{B}} \inf_{\mathbf{c} \in \mathbb{R}} \frac{1}{|\mathbf{B}|} \int_{\mathbf{B}} |f(\mathbf{y}) - \mathbf{c}| d\mathbf{y} < +\infty,$$

where the supremum is taken over all balls $B \in \mathbb{R}^n$. Identifying functions which differ by an additive constant a.e. makes BMO a Banach space with norm $\| \|_{BMO}$ equal to the left hand side of (1). Note that L^{∞} is a proper subset of BMO, since $\log |x| \in BMO$.

Let K be a locally integrable function on $\mathbb{R}^n \setminus \{0\}$ such that $Tf(x) = \lim_{\epsilon \downarrow 0} \int_{\{|y| > \epsilon\}} K(y)f(x-y)dy$ is a bounded operator on L^2 . We say K satisfies condition H_r , $1 \le r < \infty$, if there is a non-decreasing function s on (0,1) such that $\sum_{i=1}^{\infty} s(2^{-j}) < +\infty$ and

$$\left[\int\limits_{\{x:R<|x|<2R\}} |K(x-y)-K(x)|^r dx\right]^{1/r} \le s(\frac{|y|}{R}) R^{-n/r'}, \text{ for } |y|$$

Define H_{∞} by the obvious modification.

If $f \in L^{\infty}$ is supported on a set of finite measure and $K \in H_1$, then Tf exists a.e. (i.e., the limit exists and is finite), $Tf \in BMO$, and $\|Tf\|_{BMO} \leq C \|f\|_{BMO}$ [2]. On the other hand, if f is merely bounded, then without a suitable modification Tf may fail to exist on a set of positive measure. For example, if $f(x) = \chi_E(x)$ is the characteristic function of $E = \{x \in \mathbb{R}^n : x_i > 0, i=1,...,n\}$, then the Riesz transforms of f, defined by the kernels $K_j(x) = \frac{x_j}{|x|^{n+1}}$, j=1,...,n, are infinite a.e.