FREDHOLM MODULES ASSOCIATED TO BRUHAT-TITS BUILDINGS

Pierre JULG & Alain VALETTE

To the memory of our friend Hugh Morris, a young and talented Australian mathematician

1. INTRODUCTION

In his Opus Magnum [Co], Connes defines an even <u>unbounded</u> <u>Fredholm module</u> over a C*-algebra A as a pair (\mathcal{H} , D), where \mathcal{H} is a $\mathbb{Z}/2$ -graded Hilbert space carrying a **representation of A of degree O, and D is an unbounded self-adjoint operator on \mathcal{H} , of degree 1, such that:

i) $(1 + D^2)^{-1}$ is compact

ii) The subalgebra $\mathcal{A} = \{a \in A: [D,a] \text{ is bounded}\}$ is normdense in A.

Following [Co2], we say that an unbounded Fredholm module (\mathcal{H} , D) is $-\underline{summable}$ if, for any t > O, the operator e^{-tD^2} is trace-class.

This condition is rather natural if one remembers the heat equation proof of the index theorem: Connes simply requires the "heat kernel" to be trace-class. In the case of the Dirac operator D on a compact riemannian spin manifold M, one even has p-summability in the sense of $[Co]: (1 + D^2)^{-p/2}$ is trace-class for p > dim M. In particular Tr $e^{-tD^2} = O(t^{-p/2})$ for t $\rightarrow 0$. However, as shown in [Co2], this condition of p-summability is too restrictive, as being too related to finite dimension and commutativity.

If G is a locally compact group, we define an <u>unbounded</u> <u>G-Fredholm module</u> as a pair (\mathcal{H} , D), where \mathcal{H} is now a $\mathbb{Z}/2$ graded Hilbert space carrying a unitary representation of G, and D is as above, with condition ii) replaced by: