A QUALITATIVE UNCERTAINTY PRINCIPLE FOR

LOCALLY COMPACT ABELIAN GROUPS

Jeffrey A. Hogan

1. INTRODUCTION

It has long been known that if a function $f \in L^2(\mathbb{R}^n)$ and the supports of f and its Fourier transform \hat{f} are contained in bounded rectangles, then f = 0 almost everywhere. In 1974, Benedicks [2] strengthened this result by showing that the supports of f and \hat{f} having finite measure is sufficient to imply that f = 0 almost everywhere. Amrein and Berthier [1] reached the same conclusion in 1977 using Hilbert space methods. This result may be thought of as a qualitative uncertainty principle since it limits the "concentration" of the Fourier transform pair (f, \hat{f}) . Little is known, however, of analogous behaviour for functions on locally compact abelian (LCA) groups.

Let G be an LCA group with dual group Γ . Equip G with a Haar measure $m_{G}^{}$. If $\gamma \in \Gamma$ and $f \in L^{1}(G)$, the Fourier transform \hat{f} of f is given by

$$\hat{f}(\gamma) = \int_{G} f(x) \overline{\gamma(x)} dm_{G}(x).$$

We choose a Haar measure m_{Γ} on Γ for which the Plancherel identity is valid.

If G is compact, then Γ is discrete and we insist $m_{\mbox{\scriptsize G}}(G)$ = 1. With this convention, $m_{\mbox{\scriptsize P}}(\{0\})$ = 1.