ON THE L¹ BEHAVIOR OF EIGENFUNCTION EXPANSIONS AND SINGULAR INTEGRAL OPERATORS

Michael $Christ^1$ and $Christopher D. Sogge^2$

1. INTRODUCTION

Let M be a compact, smooth manifold, without boundary, of dimension $n \ge 2$. Suppose that D is a pseudodifferential operator of the class $S_{1,0}^m$ on M, selfadjoint with respect to some measure μ with a smooth, nonvanishing density in local coordinates. Suppose further that either D is an elliptic differential operator whose principal symbol is real and nonnegative, or that m = 1 and D is a pseudodifferential operator whose symbol $a(x, \xi)$ has the property that

$$\lim_{s\to\infty}a(x,s\xi)$$

exists and is real and positive for all $\xi \neq 0$. For any such operator, $L^2(M, \mu)$ admits an orthogonal decomposition

$$L^2 = \bigoplus_{j=0}^{\infty} E_j$$

where each E_j is a finite-dimensional eigenspace of D with eigenvalue λ_j . These eigenvalues are distinct and form a discrete sequence which tends to $+\infty$. Denote by π_j the orthogonal projection of L^2 onto E_j . Then

$$S_t^0 f = \sum_{\lambda_j \le t} \pi_j f \to f$$

in L^2 norm as $j \to \infty$, for all $f \in L^2$, and

$$||f||_{L^2}^2 = \sum ||\pi_j f||_{L^2}^2 .$$

¹ Supported by the Australian National University and the National Science Foundation of the USA.

² Supported in part by the National Science Foundation.