5. VECTOR VALUED FUNCTIONS AND PRODUCTS

The title practically gives away the content of this chapter. We present first a Bochner-type integration theory, that is, one based on absolute summability, for Banach space valued functions. Then we consider direct products of integrating gauges along with the corresponding Fubini- and Tonelli-type theorems. These two themes are related in the formulation of the mentioned theorems; the notion of a measurable function is avoided by stating them in terms of Bochner integrability.

A. Let ρ be a gauge on a nontrivial family, \mathcal{K} , of scalar valued functions on a space Ω . (See Section 2A.)

Let E be a Banach space. To avoid some obvious trivialities, we assume that E contains a non-zero vector. The convention of writing interchangeably ca = ac, for every $c \in E$ and a scalar a, will be used throughout the chapter.

A function $f:\Omega\to E$ will be called Bochner integrable with respect to ρ , or, briefly, ρ -integrable, if there exist vectors $c_j\in E$ and functions $f_j\in\mathcal{K}$, j=1,2,..., such that

(A.1)
$$\sum_{i=1}^{\infty} |c_{j}| \rho(f_{j}) < \infty$$

and

(A.2)
$$f(\omega) = \sum_{j=1}^{\infty} c_j f_j(\omega) ,$$

for every $\omega \in \Omega$ for which

(A.3)
$$\sum_{j=1}^{\infty} |c_j| |f_j(\omega)| < \infty.$$

The family of all E-valued functions on Ω , Bochner integrable with respect to ρ , is denoted by $\mathcal{L}(\rho,\mathcal{K},E)$. If the space E happens to be one-dimensional, that is, just the space of scalars, then, consistently with the notation introduced in Chapter 2, we write $\mathcal{L}(\rho,\mathcal{K}) = \mathcal{L}(\rho,\mathcal{K},E)$.