27 Minimal Annuli in a Slab

Recall that a catenoid is a rotation surface, hence is foliated by circles in parallel planes.
A good question to ask is whether there are other minimal annuli which can be foliated
by circles. It was B. Riemann [72] and Enneper [14] who solved this problem very
satisfactorily. The answer is that there is only one one-parameter family of such surfaces
up to a homothety. Fach minimal annuli in this one-parameter family is contained in
a slab and foliated by circles, and its boundary is a pair of parallel straight lines.
Rotating repeatly about these boundary straight lines gives a one-parameter family of
singly periodic minimal surface; these surfaces are called Riemann’s examples.

For the details of the proof of existence and other properties of Riemann’s examples,
see [61], section 5.4, Cyclic minimal surfaces. For constructions of Riemann’s examples
using the Weierstrass functions please see [25]. It is also known that a pair of parallel
straight lines can only bound a piece of Riemann’s example, if they bound any minimal
annulus at all, see for example, [17].

Now we are going to study minimal annuli in a slab. Let P, = {(z,y,2) € R3|z =
t} and S(t1,t2) = {(z,9,2) € R3[t; < 2 < ty, 1 < to}. Consider a minimal annulus
X : Ar = S(t1,ts) such that X({|z| = 1/R}) C P, X({|z| = R}) C P, and X is
continuous on Ar. We will call such a minimal annulus a minimal annulus in a slab.
By a homothety we can normalize £, and ¢5 such that t; = —1 and ¢, = 1. We will
denote the image X(Ag) C S(—1,1) by A and let A(t) = ANP, for -1 <t < 1.
When discussing a minimal annulus in a slab, we often just refer to it by the image
A = X(Ag).

We want to derive the Enneper-Weierstrass representation of a minimal annulus in
a slab. Let A be a minimal annulus in a slab. The third coordinate function X3 is
harmonic, X3|{|z]:1/R} = —1, and X3|{!Z|:R} = 1. By uniqueness of solutions to the
Dirichlet problem

Au =0 in Int(Ag)

ul{jzl=1/ry = —1, U|{|z1—R} =1,

where Int(Ap) is the interior of Ag, we have X3 = log |z, and
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Hence f(z) = Here of course g is the Gauss map in the Enneper-Weierstrass

representation lggnlzzj‘((Z) )dz = 7. Thus by (6.26) we have
wi = ra(;—9)dz
Wy = epas(s t9)dz (27.124)
Wy = logRid’z
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