13 Total Curvature of Branched Complete Minimal
Surfaces

Let X : M — R? be a complete minimal surface with finite total curvature. Osserman’s
theorem says that conformally M = Sy — {p1,---,pn}, n > 1, where S is a closed
Riemann surface of genus k. Each p; corresponds to an end F; of M. Using Theorem
12.1, we can prove:

Theorem 13.1 The total curvature of X is
K(M)=2r (X(M) -3 Ii> ) (13.57)
i=1

where x(M) = 2(1 — k) — n is the Euler characteristic of M and I; is the multiplicity
Of Ei.

Proof. Let I = X1 (rW]) be as in the proof of Theorem 12.1. Let p; € D] be the
disk in Sy such that D] =T;. When r is large enough the D]’s are disjoint from each
other. Then M, := S, — U, D] is a Riemann surface with boundary Ui, 0D] and
x(M,) = x(M). Now by the Gauss-Bonnet formula we have

/Mr KdA + ; /1“;: kg ds = 2mx(M,) = 2rx (M),

where k, is the geodesic curvature. Since W] = %X (T'7) converges in the C'*° sense to
a great circle on S? with multiplicity I; and X is an isometric immersion, we have

lim [ Kyds=2ml;.
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Taking limit we have

K(M) = [ KdA =2 (x(M) - ZI) . (13.58)
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In the remainder of this section, our surfaces will be branched minimal surfaces.
Note that the concepts of completeness, properness, etc., can be easily generalised to
branched minimal surfaces.

The Enneper-Weierstrass representation of a branched complete minimal surface of
finite total curvature X : M — R? is given by

xX@) = [ (0= 30+6% g)n+C, (13.59
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