11 Ends of Complete Minimal Surfaces

By Osserman's theorem, any complete minimal surface of finite total curvature is an immersion $X: M = S_k - \{p_1, \dots, p_r\} \hookrightarrow \mathbf{R}^3$, where S_k is a closed Riemann surface of genus k. Consider conformal closed disks $D_i \subset S_k$ such that $p_i \in D_i$ and $p_j \notin D_i$ for $j \neq i$. Denote $D_i^* := D_i - \{p_i\}$. For any such D_i , the restriction $X: D_i^* \hookrightarrow \mathbf{R}^3$ is called a representative of an end of X at p_i or simply an end. When we say that some property holds at an end of X at p_i , for example embeddedness, we mean that there is a disk like domain D_i such that for any disk like domain $p_i \in U_i \subset D_i, X: U_i - \{p_i\}$ satisfies the property. Such a representative $X: U_i - \{p_i\} \to \mathbf{R}^3$ is called a subend of the end $X: D_i^* \hookrightarrow \mathbf{R}^3$.

Osserman's theorem says that the Gauss map g extends to p_i and the extended g is a meromorphic function. Since $N = \tau^{-1} \circ g$ we have a well defined normal vector $N(p_i)$ at p_i , which we call the *limit normal* at p_i . This also defines a *limit tangent plane* at the end E_i corresponding to p_i .

Intuitively, and we will prove it later (see Proposition 11.5), $E_i = X(D_i^*) \subset \mathbb{R}^3$ is an unbounded set. Moreover, since $M - \bigcup_{i=1}^r D_i^*$ is precompact, $X(M) - \bigcup_{i=1}^r E_i$ is bounded. Thus if X is an embedding, an end E_i is just a connected component of X(M) - B, where B is any sufficiently large ball in \mathbb{R}^3 centred at 0.

In this section, all ends considered are ends of some complete minimal surface of finite total curvature.

Now consider the Enneper-Weierstrass representation of the complete minimal surface $X: M \hookrightarrow \mathbb{R}^3$. By (6.20)

$$\Lambda^2 = \frac{1}{2} \left(|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 \right).$$

Now let $r: [0,1) \to D_i^*$ be a regular curve such that |r'(t)| = 1 and $\lim_{t\to 1} r(t) = p_i$. By completeness,

$$\int_0^1 \Lambda(r(t)) |r'(t)| dt = \infty.$$

This implies that $\Lambda(q) \to \infty$ as $q \to p$. Since ϕ_i 's are meromorphic, one of them must have a pole at p. Hence let z be the local coordinate of D_i such that $z(p_i) = 0$, we must have

$$\Lambda^{2} = \frac{1}{2} \left(|\phi_{1}|^{2} + |\phi_{2}|^{2} + |\phi_{3}|^{2} \right) \sim \frac{c}{|z|^{2m}}, \tag{11.46}$$

where c > 0 and $m \ge 1$ is an integer.

Definition 11.1 If $\Lambda^2 \sim c/|z|^{2m}$ at an end, we say that Λ has order m at that end.

Remark 11.2 Since Λ^2 is the pull back metric of $X: M \to \mathbb{R}^3$, we see that the order of Λ is invariant under an isometry in \mathbb{R}^3 . Precisely, if A is an isometry of \mathbb{R}^3 then AX and X has the same pull back metric Λ^2 . Thus the order of Λ at an end is invariant.