SOLITON GEOMETRY, KAC-MOODY ALGEBRAS AND THE YANG-BAXTER EQUATIONS

Ivan Sterling

1.INTRODUCTION AND EXAMPLES

This note is based on joint work with D.Ferus, F. Pedit and U.Pinkall [1].

Soliton geometry has been successfully applied to the study of linear Weingarten surfaces (e.g. $H=\frac{1}{2}$, K=-1, smoke rings (tubular surfaces), minimal, flat) in three dimensional Riemannian and Lorentzian space forms, minimal surfaces in S^4 , minimal surfaces in the Lorentzian S^4 (which are almost in 1:1 correspondence with Willmore surfaces), harmonic maps in Lie groups (and symmetric spaces), isometric imbeddings $M^n(k) \to M^{2n-1}(k^2)$, etc.

Since we will be discussing a quite general method which applies to all the above examples it is important to also consider a specific case in order to get a feel for the difficulties involved in "setting the dials on the machine". The case we'll consider is that of minimal surfaces in S⁴. For the sake of completeness we'll first review the classical cases to show how soliton PDE's arise natually in geometry.

2. NICE SURFACES COME FROM SOLITON EQUATIONS

Let H and K be the mean and Gauss curvatures.

If $f: \mathbb{R}^2 \to \mathbb{R}^3$ has K=-1 and is parametrized by asymptotic lines with $|f_x| = |f_y| = 1$ and $\omega(x,y)$ is the angle between the asymptotic lines (i.e. $\arccos < f_x, f_y >$), then ω satisfies the sine-Gordon equation $\omega_{xy} = \sin \omega$.

If $f: \mathbb{R}^2 \to \mathbb{R}^3$ has $H = \frac{1}{2}$ and is parametrized by curvature lines with $\langle f_z, f_z \rangle = 0$ (i.e. f is conformal) and $\omega(x,y)$ is $\log |f_x|$, the ω satisfies the sinh-Gordon equation $\omega_{z\overline{z}} + \frac{1}{2} \sinh(2\omega) = 0$.