DISCRETE NORMS FOR THE CONVERGENCE OF BOUNDARY ELEMENT METHODS

G.A. CHANDLER

1. INTRODUCTION.

The simplest of elliptic problems is the interior Dirichlet problem for Laplace's equation. We are given a bounded region $\Omega \subset \mathbb{R}^2$ with a smooth boundary Γ , and want to find the unknown function U satisfying

 $-\Delta U(x) = 0$, $x \in \Omega$, and U(x) = g(x), $x \in \Gamma$;

for some given function g.

As the fundamental solution for $-\Delta$ is

$$G(x,\xi) := \frac{1}{2\pi} \log \frac{1}{|x-\xi|}, \quad x,\xi \in \mathbb{R}^2,$$

we have Green's formula

(1.1)
$$\int_{\Gamma} G(x,.)U_{\nu} - \int_{\Gamma} G(x,.)U = U(x), \quad x \in \operatorname{int}(\Omega)$$

(1.2)
$$= \frac{1}{2}U(x), \quad x \in \Gamma$$

(For any $x \in \Gamma$, $\nu(x)$ is the outward normal at x, $U_{\nu}(x) = \nu(x) \cdot \nabla U(x)$, and $G_{\nu}(x,\xi) = \nu(\xi) \cdot \nabla_{\xi} G(x,\xi)$ is the normal derivative of G with respect to the second variable.) The

This work was supported by the Australian Research Council through the program grant Numerical analysis for integrals, integral equations and boundary value problems.