
Chapter 2

Data structures

2.1 General principles

In this chapter an overview of the data structures is given, as well as indicating how
memory management is undertaken. For more information about how to use and
develop data structures, you should see chapter 8 on designing data structures.

One of the main thrusts of Meschach is to use C's data structuring ability to
"package" the objects so that they are self-contained and can be dealt with as single
entities. This is combined with C's memory allocation and de-allocation techniques to
make basic mathematical objects (vectors, matrices, permutations etc) work more like
their mathematical counterparts. So, a vector structure contains not only the array of its
components, but also the dimension of the vector, and the amount of allocated memory
(which may be larger than the dimension). This vector can be used for ordinary vector
operations, computing matrix-vector products, solving systems of linear equations, or
just for storing data. If there is a mismatch in, say, the size of the vector and the vectors
or matrices that it operates with, then an error is raised to indicate this. The vector can
also be created when needed, and destroyed when not. It can be re-sized when desired
to be larger or smaller.

The type of floating point number is Real, which is one of the floating point types.
The default floating point type is double.

The integer vector and permutation data structures are very similar to the vector
data structure, and contain not only the array of values, but also the current dimension
or size of the integer vector or permutation and the amount of allocated memory in this
array. Permutations are really restricted integer vectors; they are initialised differently
(to the identity permutation, instead of all zeros) and the permutation routines preserve
the property of being a permutation.

Matrices are represented by a more complex data structures, and are essentially a
two-level data structure. To have variable size 2-dimensional arrays inC, pointer-to­
pointer structures are needed, such as

Real **Aentries;

23

