1. ELEMENTARY PROPERTIES OF DIRECT PRODUCTS

We shall concern ourselves with systems

$$\underline{A} = \langle A, +, 0_0, 0_1, \dots, 0_g, \dots \rangle$$

constituted by an arbitrary set A, a binary operation + (the operation of addition), and arbitrarily many other operations arranged in a sequence 0_0 , 0_1 ,..., $0_{\underline{\mu}}$,... of a type τ (where τ is a finite or transfinite ordinal). Each of these operations $0_{\underline{\mu}}$ is assumed to be defined for finite or transfinite sequences of elements x_0 , x_1 ,..., x_k ,... of a well-determined type $\rho_{\underline{\mu}}$ called the <u>rank</u> of the operation. Thus, $0_{\underline{\mu}}$ may be a unary operation ($\rho_{\underline{\mu}} = 1$), a binary operation ($\rho_{\underline{\mu}} = 2$), a ternary operation ($\rho_{\underline{\mu}} = 3$), an operation on simple infinite sequences ($\rho_{\underline{\mu}} = \omega$), etc. An operation $0_{\underline{\mu}}$ with the rank $0_{\underline{\mu}} = 0$ will be referred to for brevity as a μ -ary operation. Two systems

$$\underline{A}$$
 = < A, +, 0₀, 0₁,..., 0_p,... > with ξ < τ

and

$$\underline{A}^{\dagger} = \langle ..., +^{\dagger}, 0_0^{\dagger}, 0_1^{\dagger}, ..., 0_g^{\dagger}, ... \rangle$$
 with $\xi < \tau^{\dagger}$

are called $\underline{similar}$ if the sequences of ranks $\rho_{\vec{k}}$ and $\rho_{\vec{k}}^{\,i}$ are identical, i.e., if

$$\tau = \tau'$$
, and $\rho_E = \rho_E^i$ for every $\xi < \tau$

The sequence of ranks ρ_g will sometimes be referred to as the similarity type of the system \underline{A}_* .

The symbolic expression

will express, as usual, the fact that x, y,... are elements of A. We shall speak occasionally of elements of the system \underline{A} having actually in mind elements of the set A; and we shall call the system \underline{A} finite (or infinite) in case the set A is finite (or infinite).