1. ELEMENTARY PROPERTIES OF DIRECT PRODUCTS

We shall concern ourselves with systems

$$
\underline{A}=\left\langle A,+, 0_{0}, 0_{1}, \ldots, 0_{\xi}, \ldots\right\rangle
$$

constituted by an arbitrary set A, a binary operation + (the operation of addition), and arbitrarily many other operations arranged in a sequence $O_{0}, O_{1}, \ldots, O_{\varepsilon}, \ldots$ of a type τ (where τ is a finite or transfinite ordinal). Each of these operations 0_{ξ} is assumed to be defined for finite or transfinite sequences of elements $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ of a well-determined type P_{ξ} called the rank of the operation. Thus, O_{E} may be a unary operation ($\rho_{\xi}=1$), a binary operation $\left(\rho_{\xi}=2\right)$, a ternary operation $\left(\rho_{\xi}=3\right)$, an operation on simple infinite sequences ($\rho_{\xi}=\omega$), etc An operation O_{ξ} with the rank $\rho_{\xi}=\mu$ will be referred to for brevity as a μ-ary operation. Two systems

$$
A=\left\langle A,+, 0_{0}, 0_{1}, \ldots, 0_{\beta}, \ldots\right\rangle \text { with } \xi<\tau
$$

and

$$
\underline{A}^{\prime}=\left\langle\ldots,+1,0 d, 01, \ldots, 0_{\varepsilon}^{\prime}, \ldots\right\rangle \text { with } \xi<\tau 1
$$

are called similar if the sequences of ranks ρ_{ξ} and ρ_{ξ}^{\prime} are identical, i.e., if

$$
\tau=\tau^{\prime} \text {, and } \rho_{\xi}=\rho_{\xi}^{\prime} \text { for every } \xi<\tau
$$

The sequence of ranks ρ_{ε} will sometimes be referred to as the similarity type of the system A.

The symbolic expression

$$
x, y, \ldots \varepsilon A
$$

will express, as usual, the fact that x, y, \ldots are elements of A. We shall speak occasionally of elements of the system A having actually in mind elements of the set A; and we shall call the system A finite (or infinite) in case the set A is finite (or infinite).

