8. Sets representing ordinals

There exists a class of sets of such a particular structure that they may suitably be said to represent ordinal numbers. I shall first mention the definition by R. M. Robinson (1937).

A set M is an ordinal, if

- 1) M is transitive. That a set M is transitive means that it contains its union. In symbols: $(x)(y)((x \in y) \& (y \in M) \rightarrow (x \in M))$.
- 2) Every non empty subset N of M is basic, which means that it is disjoint to one of its elements. In logical symbols: $(Ex)(x \in N \& (x \cap N = 0))$.
- 3) If $A \neq B$, $A \in M$ and $B \in M$, then either $A \in B$ or $B \in A$.
- I shall call every set M with the properties 1), 2), 3) an R-ordinal.

Remark 1. If \mathfrak{M} is a class of R-ordinals, then the intersection of all elements of \mathfrak{M} is again an R-ordinal. Indeed, if M_0 is this intersection, we have that if $A \in B$, $B \in M_0$, then $A \in B$, $B \in M$ for every M in \mathfrak{M} , whence $A \in M$ because M is transitive, whence $A \in M_0$, because this is valid for every M in \mathfrak{M} . Thus M_0 is transitive. Let $0 \subset N \subseteq M_0$. Then for any M in \mathfrak{M} we have $0 \subset N \subseteq M$, whence by 2) M_0 has the property 2). Finally let A and B be different and $\in M_0$. Then for any M in \mathfrak{M} we have A and $B \in M$, whence by 3) either $A \in B$ or $B \in A$. Thus M_0 has the property 3).

Remark 2. Further it may be remarked that if M is an R-ordinal we have $M \in M$, because $M \in M$ would mean that the subset $\{M\}$ of M was not basic.

Theorem 31. Every R-ordinal M is the set of all its transitive proper subsets.

Proof. Let C be ϵ M. Since M is transitive, C must be \subseteq M. Indeed C is \subset M. C = M is impossible, because that would mean $M \epsilon M$, which is impossible by Remark 2. Further C must be transitive. Indeed let $A \epsilon B$, $B \epsilon C$. Then $B \epsilon M$, whence $B \subseteq M$, whence $A \epsilon M$, whence $A \subseteq M$. By 3) we have either $A \epsilon C$ or $C \epsilon A$ or A = C. I assert that $C \epsilon A$ and C = A are impossible. Indeed, $C \epsilon A$ would imply that $\{A, B, C\}$ is not basic, and C = A would mean that $\{A, B\}$ is not basic. Hence $A \epsilon C$, that is, C is transitive. So far I have proved that every element C of M is a transitive proper subset of M.

Let, on the other hand, C be a transitive proper subset of M. Then $0 \subset M - C$ so that by 2) an element A of M - C exists such that $A \cap (M - C) =$ 0. Then, if $B \in C$, neither A = B nor $A \in B$, because of the transitivity of C. Therefore $B \in A$ and thus $C \subseteq A$ because $B \in C$ yields $B \in A$ for all B. Since $A \subseteq M$ and $A \cap (M - C) = 0$, it follows that $A \subseteq C$, whence A = C, whence $C \in M$. Thus I have proved that every transitive proper subset of M is element of M.

Remark 3. It is clear according to this that every element of an $R\-$ ordinal is an $R\-$ ordinal.