$\{a_0, b_0, c_0, \dots\},\$

where $a_0 \in A' - A_1$, $b_0 \in B' - B_1$, However this element cannot correspond to any element of ST. Indeed it cannot be mapped on an element of A_0 , for example, because if it could, a_0 would have to be one of the elements of A_1 .

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every set can be well-ordered. First I shall give another version of the notion "well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having M as domain of the argument values and UM as domain of the function values, such that if $N \supset 0$ is arbitrary and $\in UM$, there is a unique $n \in N$ such that $N\subseteq R(n)$. I have to show that this definition is equivalent to the ordinary one. If M is well-ordered in the ordinary sense, then every nonvoid subset N has a unique first element. Then it is clear that if R(n), $n \in M$, means the set of all $x \in M$ such that $n \leq x$, the other definition is fulfilled by this R. Let us, on the other hand, assume that we have a function R of the said kind. Letting N be $\{a\}$, one sees that always $a \in R(a)$. Let N be $\{a,b\}$, $a \neq b$. Then either a or b is such that N \subseteq R(a) resp. R(b). If N \subseteq R(a), then we put $a \leq b$. Since then N is not $\subseteq R(b)$, we have $a \in R(b)$. Now let $b \leq c$ in the same sense that is, $c \in R(b)$, $b \in R(c)$. Then it is easy to see that a < c. Indeed we shall have $\{a,b,c\}\subseteq$ either R(a) or R(b) or R(c), but $b \in \mathbb{R}(c)$, $a \in \mathbb{R}(b)$. Hence $\{a,b,c\} \subseteq R(a)$ so that $\{a,c\} \subseteq R(a)$, i.e. a < c. Thus the defined relation < is linear ordering. Now let N be an arbitrary subset of M and n be the element of N such that $N\subseteq R(n)$. Then if $m \in N$, $m \neq n$, we have $m \in R(n)$, which means that n < m. Therefore the linear ordering is a well-ordering.

Theorem 10. Let a function ϕ be given such that $\phi(A)$, for every A such that $O \subseteq A \subseteq M$, denotes an element of A. Then UM possesses a subset **M** such that to every $N \subseteq M$ and $\supset O$ there is one and only one element N_0 of **M** such that $N \subseteq N_0$ and $\phi(N_0) \in N$.

Proof: I write generally A' = A - $\{\phi(A)\}$. I shall consider the sets $P \subseteq UM$ which, like UM, possess the following properties

- M ∈ P
- 2) $A \in P \rightarrow A' \in P$ for all $A \subseteq M$
- 3) T P \rightarrow DT ϵ P.

These sets P constitute a subset \mathbb{C} of UUM. They are called Θ -chains by Zermelo. I shall show that the intersection $D\mathbb{C}$ of all elements of \mathbb{C} is again a Θ -chain, that is, $D\mathbb{C} \in \mathbb{C}$. It is seen at once that $D\mathbb{C}$ possesses the properties 1) and 2). Now let $T \subseteq D\mathbb{C}$. Then, if $P \in \mathbb{C}$, we have $T \subseteq P$, and since 3) is valid for P, also $DT \in P$. Since this is true for all P, we have $DT \in D\mathbb{C}$ as asserted. Thus I have proved that $D\mathbb{C} \in \mathbb{C}$.