$$
\left\{a_{0}, b_{0}, c_{0}, \ldots .\right\}
$$

where $a_{0} \in A^{\prime}-A_{1}, b_{0} \in B^{\prime}-B_{1}, \ldots$. However this element cannot correspond to any element of ST. Indeed it cannot be mapped on an element of A_{0}, for example, because if it could, a_{0} would have to be one of the elements of A_{1}.

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every set can be well-ordered. First I shall give another version of the notion "well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having M as domain of the argument values and UM as domain of the function values, such that if $N \supset 0$ is arbitrary and $\epsilon U M$, there is a unique $n \in N$ such that $N \subseteq R(n)$. I have to show that this definition is equivalent to the ordinary one. If M is well-ordered in the ordinary sense, then every nonvoid subset N has a unique first element. Then it is clear that if $R(n), n \in M$, means the set of all $\mathbf{x} \in \mathrm{M}$ such that $\mathrm{n} \leqq \mathrm{x}$, the other definition is fulfilled by this R. Let us, on the other hand, assume that we have a function R of the said kind. Letting N be $\{\mathrm{a}\}$, one sees that always $\mathrm{a} \in \mathrm{R}(\mathrm{a})$. Let N be $\{\mathrm{a}, \mathrm{b}\}$, $a \neq b$. Then either a or b is such that $N \subseteq R(a)$ resp. $R(b)$. If $N \subseteq R(a)$, then we put $a<b$. Since then N is not $\subseteq R(b)$, we have $a \bar{\epsilon} R(b)$. Now let $b<c$ in the same sense that is, $c \in R(b), b \bar{\epsilon} R(c)$. Then it is easy to see that $a<c$. Indeed we shall have $\{a, b, c\} \subseteq$ either $R(a)$ or $R(b)$ or $R(c)$, but $b \bar{\epsilon} R(c), a \bar{\epsilon} R(b)$. Hence $\{a, b, c\} \subseteq R(a)$ so that $\{a, c\} \subseteq R(a)$, i.e. $a<c$. Thus the defined relation < is linear ordering. Now let N be an arbitrary subset of M and n be the element of N such that $N \subseteq R(n)$. Then if $m \in N, m \neq n$, we have $m \in R(n)$, which means that $\mathrm{n}<\mathrm{m}$. Therefore the linear ordering is a well-ordering.

Theorem 10. Let a function ϕ be given such that $\phi(A)$, for every A such that $O \subset A \subseteq M$, denotes an element of A. Then UM possesses a subset an such that to every $N \subseteq M$ and $\supset O$ there is one and only one element N_{0} of all such that $N \subseteq N_{0}$ and $\phi\left(N_{0}\right) \in N$.
Proof: I write generally $A^{\prime}=A-\{\phi(A)\}$. I shall consider the sets $P \subseteq U M$ which, like UM, possess the following properties

1) $M \in P$
2) $A \in P \rightarrow A^{\prime} \in P$ for all $A \subseteq M$
3) $T P \rightarrow D T \in P$.

These sets P constitute a subset \mathbb{d} of UUM. They are called Θ-chains by Zermelo. I shall show that the intersection $D \mathbb{C}$ of all elements of \mathbb{C} is again a Θ-chain, that is, $D \mathbb{C} \epsilon \mathbb{C}$. It is seen at once that $D \mathbb{C}$ possesses the properties 1) and 2). Now let $T \subseteq D \mathbb{C}$. Then, if $P \in \mathbb{C}$, we have $T \subseteq P$, and since 3) is valid for P, also $D T \in P$. Since this is true for all P, we have $\mathrm{DT} \epsilon \mathrm{D} \mathbb{C}$ as asserted. Thus I have proved that $\mathrm{D} \mathbb{C} \in \mathbb{C}$.

