Appendix B

A THEOREM BY M. CUGIANI

Roth's Theorem suggests the following problem.
Let ξ be a real algebraic number. To find a function $\epsilon(Q)>0$ of the integral variable Q , with the property

$$
\lim _{\mathbf{Q} \rightarrow \infty} \epsilon(\mathbf{Q})=0
$$

such that there are at most finitely many distinct rational numbers $\frac{\mathbf{P}}{\mathbf{Q}}$ with positive denominator for which

$$
\left|\frac{\mathbf{P}}{\mathbf{Q}}-\xi\right|<\mathbf{Q}^{-2-\epsilon(\mathbf{Q})} .
$$

Unfortunately, the method of Roth does not seem strong enough for solving this problem and finding such a function $\epsilon(\mathbb{Q})$.

A weaker result may, however, be obtained and was, in fact, recently found by Marco Cugiani ${ }^{1}$. It states:

Theorem of Cuglani: Let ξ be a real algebraic number of degree f; let

$$
\epsilon(Q)=9 f(\log \log \log Q)^{-\frac{1}{2}} ;
$$

and let $\frac{\mathbf{P}^{(1)}}{\mathrm{Q}^{(1)}}, \frac{\mathbf{P}^{(2)}}{\mathbf{Q}^{(2)}}, \frac{\mathbf{P}^{(\mathrm{s})}}{\mathbf{Q}^{(3)}}, \ldots$, where $\mathrm{e}^{\mathrm{e}}<\mathrm{Q}^{(1)}<\mathrm{Q}^{(2)}<\mathrm{Q}^{(\mathrm{s})}<\ldots$, be an infinite sequence of reduced rational numbers satisfying

$$
\left|\frac{P^{(k)}}{Q^{(k)}}-\xi\right|<Q^{(k)-2-\epsilon\left(Q^{(k)}\right)} \quad(k=1,2,3, \ldots)
$$

Then

$$
\limsup _{k \rightarrow \infty} \frac{\log Q^{(k+1)}}{\log Q^{(k)}}=\infty
$$

This theorem is thus an improvement of that by Th. Schneider ${ }^{2}$ which was mentioned already in the Introduction to Part 2.

In this appendix we shall sketch a proof of the following theorem which contains Cugiani's result as the special case $\lambda=\mu=1$.

Theorem 1: Denote by $\xi \neq 0$ a real algebraic number of degree f; by $\mathrm{g}^{\prime} \geqslant 2$ and $\mathrm{g}^{\prime \prime} \geqslant 2$ two integers that are relatively prime; by λ and μ two real numbers satisfying

1. Collectanea Mathematica, N. 169, Milano 1958.
2. J. reine angew. Math. 175 (1936), 182-192.
