Chapter 8

THE SECOND APPROXIMATION THEOREM

1. The two forms of the theorem.

This chapter contains a generalisation of the First Approximation Theorem which has just been proved. We begin by introducing some notations that will be used.

If α is any real number, and β is any p-adic number, put

$$
|\alpha|^{*}=\min (|\alpha|, 1), \quad \quad|\beta|_{\mathbf{p}}^{*}=\min \left(|\beta|_{\mathbf{p}}, 1\right)
$$

so that always

$$
0 \leqslant|\alpha| * \leqslant 1, \quad 0 \leqslant|\beta|_{\mathrm{p}}^{*} \leqslant 1
$$

Denote by

$$
p_{1}, p_{2}, \ldots, p_{r} ; p_{r+1}, p_{r+2}, \ldots, p_{r+r^{\prime}} ; p_{r+r^{\prime}+1^{\prime}}, p_{r+r^{\prime}+2}, \ldots, p_{r+r^{\prime}+r^{\prime \prime}}
$$

a fixed system of

$$
\mathbf{r}+\mathbf{r}^{\prime}+\mathbf{r}^{i p}, \quad=\mathbf{n} \text { say }
$$

distinct primes. It is not excluded that one, two, or all three of the numbers r, r^{\prime}, and $\mathbf{r}^{\prime \prime}$, are equal to zero.

Let further

$$
\xi \neq 0, \xi_{1}+0, \ldots, \xi_{r}+0
$$

denote a real algebraic number, a p_{1}-adic algebraic number, etc., a p_{r}-adic algebraic number, respectively. These algebraic numbers need not satisfy the same irreducible algebraic equation with rational coefficients, and thus they may belong to different finite extensions of the rational field.

Next let

$$
F(x), F_{1}(x), \ldots, F_{r}(x)
$$

be $r+1$ polynomials with rational coefficients, which neither vanish at $\mathbf{x}=0$ nor have multiple factors. It is not required that all these polynomials are distinct, that they are irreducible, or that they are non-constant.

As in previous chapters, let again $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ be an infinite sequence of distinct rational numbers

$$
\kappa^{(k)}=\frac{P^{(k)}}{Q^{(k)}} \neq 0, \text { where } P^{(k)} \neq 0, Q^{(k)} \neq 0,\left(P^{(k)}, Q^{(k)}\right)=1, H^{(k)}=\max \left(\left|P^{(k)}\right|,\left|Q^{(k)}\right|\right)
$$

Finally, put

