Chapter 7

THE FIRST APPROXIMATION THEOREM

1. The properties A_d, B, and C.

While the last two chapters depended on purely algebraic ideas, we now introduce real and g-adic algebraic numbers and study their rational approximations with respect to the corresponding absolute value or g-adic value, respectively. Here, as usual,

$$g = p_1^{e_1} \dots p_r^{e_r} \ge 2$$

where $p_1,...,p_r$ are distinct primes, and $e_1,...,e_r$ are positive integers; the g-adic value $|A|_g$ of $A \nleftrightarrow (\alpha_1,...,\alpha_r)$ is defined by

$$|A|_{g} = \max\left(|\alpha_{1}|_{p_{1}}^{\frac{\log g}{e_{1}\log p_{1}}}, \dots, |\alpha_{r}|_{p_{r}}^{\frac{\log g}{l_{r}\log p_{r}}}\right)$$

The later occurring g'-adic and g''-adic values $|a|_{g'}$ and $|a|_{g''}$ are defined analogously.

The letter ξ always denotes a fixed real algebraic number, and the letter Ξ a fixed g-adic algebraic number. Only ξ satisfying

ξ = 0

and only $\Xi \leftrightarrow (\xi_1, ..., \xi_r)$ satisfying

$$\xi_1 \neq 0, ..., \xi_r \neq 0$$

will be considered. We denote by

$$F(x) = F_0 x^f + F_1 x^{f-1} + ... + F_f$$
, where $f \ge 1$, $F_0 \ne 0$, $F_f \ne 0$,

a polynomial of lowest degree with integral coefficients having either ξ , or Ξ , or both ξ and Ξ , as zeros; hence, by Chapter 3, F(x) has no multiple factors. As before, we put

 $c = 2 \max(|F_0|, |F_1|, ..., |F_f|),$ so that c > 1.

Next we denote by

$$\Sigma = \{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, ...\}$$

a fixed infinite sequence of distinct rational numbers

$$\kappa^{(k)} = \frac{P^{(k)}}{Q^{(k)}} \neq 0$$

where $P^{(k)} \neq 0$ and $Q^{(k)} \neq 0$ are integers such that

$$(P^{(k)}, Q^{(k)}) = 1.$$