PART 2

RATIONAL APPROXIMATIONS OF ALGEBRAIC NUMBERS

The problem and its history.
Let α be a real algebraic number of degree $n \geqslant 2$; thus α is irrational. One of the results obtained in the proof of Theorem 1 of Chapter 3 was as follows. Let

$$
F(x)=A_{0} x^{m}+A_{1} x^{m-1}+\ldots+A_{m} \neq 0
$$

be any polynomial with integral coefficients, of degree at most m, and of height

$$
A=|F(x)|=\max \left(\left|A_{0}\right|,\left|A_{1}\right|, \ldots,\left|A_{m}\right|\right) \geqslant 1
$$

Then

$$
\text { either } F(\alpha)=0 \text { or }|F(\alpha)| \geqslant c_{1}(m) A^{-(m-1)}
$$

where $c_{1}(m)>0$ depends on α and on m, but not on A.
Let now $m=1$ and $F(x)=Q x-P$ where $Q>0$ and P are integers; then $A=\max (|P|, Q)$, and on putting $c_{1}=c_{1}(1)$, the last result implies that

$$
|Q \alpha-P| \geqslant c_{1} \max (|P|, Q)^{-(n-1)},
$$

because $Q \alpha-P \neq 0$. This inequality is equivalent to
(1):

$$
\left|\alpha-\frac{P}{Q}\right| \geqslant c Q^{-n}
$$

where $\mathrm{c}>0$ is another constant depending only on α. For either

$$
\left|\frac{\mathrm{P}}{\mathrm{Q}}\right|>|\alpha|+1 \text { and then }\left|\alpha-\frac{\mathrm{P}}{\mathrm{Q}}\right|>1 \geqslant \mathrm{Q}^{-\mathrm{n}}
$$

or

$$
\begin{aligned}
& \left|\frac{P}{Q}\right| \leqslant|\alpha|+1 \text {, hence } \max (|P|, Q) \leqslant(|\alpha|+1) Q \text {, and then } \\
& \qquad\left|\alpha-\frac{P}{Q}\right| \geqslant \frac{\mathbf{c}_{\mathbf{I}}}{Q}\{(|\alpha|+1) Q\}^{-(n-1)}=\frac{\mathbf{c}_{1}}{(|\alpha|+1)^{n-1} Q^{-n}}
\end{aligned}
$$

The inequality (1) is due to J . Liouville ${ }^{1}$ who used it in his construction of real transcendental numbers. Apart from the value of the constant c, it is best possible for quadratic irrationals ($n=2$). For, as was proved in two different ways in Chapters 3 and 4, if α is any irrational number (not necessarily algebraic), then there are infinitely many distinct rational numbers $\frac{\mathbf{P}}{\mathbf{Q}}$ such that

[^0]
[^0]: 1. C. R. Acad. Sci. (Paris), 18 (1844), 883-885, 910-911.
