III R. A. FISHER'S THEORY OF ESTIMATION⁵⁾

The problem of estimation of the unknown parameter Θ is the problem of finding a function $t(x_1, \ldots, x_n)$ of the observations such that t can be considered in a certain sense as a "good" or "best" estimate of Θ . Since the estimate $t(x_1, \ldots, x_n)$ is a random variable, we cannot expect that its value should coincide with that of the unknown parameter, but we will try to choose $t(x_1, \ldots, x_n)$ in such a way as to make as great as possible the probability of the value of t lying as near as possible to the value of the unknown parameter Θ .

This is a somewhat vague formulation of the requirement for a "good" or "best" statistical estimate. It can be made precise in different ways. Markoff⁶⁾, for instance, defines the notion of <u>a "best" estimate</u> as follows; A statistic t (we shall call any function of the observations a <u>statistic</u>) is a best estimate of Θ if

- (1) t is an unbiased estimate of θ , i.e., $E_{\theta}(t) = \theta$ identically in θ where $E_{\theta}(t)$ denotes the expected value of t under the assumption that θ is the true value of the parameter.
- (2) $E_{\theta}(t-\theta)^2 \leq E_{\theta}(t^*-\theta)^2$ identically in θ for all t' which satisfy (1).

This definition of a "best estimate" seems to be a reasonable and acceptable one since, in general, the smaller the variance of t the greater is the probability that t will lie in a small

⁵⁾ See references 3 - 6

⁶⁾ See reference 15, p.544