ON THE EXISTENCE OF Ø-DEFINABLE NORMAL SUBGROUPS OF A STABLE GROUP

Anand Pillay*

There is a family of results concerning the existence of (\emptyset) -definable normal subgroups of a stable group. Namely:

(1) (Berline-Lascar [B-L]). If G is superstable, and

$$U(G) = \omega^{\alpha_1} n_1 + \dots + \omega^{\alpha_k} n_k + \beta (\beta < \omega^{\alpha_k})$$

then G has a normal subgroup K with $U(K) = \omega^{\alpha_1} n_1 + ... + \omega^{\alpha_k} n_k$.

(2) (Hrushovski [H]). If G is stable and its generic type is nonorthogonal to a regular type p, then there is a definable normal subgroup K of G such that G/K is "p-internal" and infinite.

(3) (Pillay-Hrushovski [PH]). If G is 1-based and connected then every type q = stp(a/A) ($a \in G$) is the generic type of a coset of a normal $acl(\emptyset)$ -definable subgroup K of G.

In this expository paper we will prove these results and some variants.

We work throughout over acl (\emptyset) (i.e. we assume acl $(\emptyset) = dcl (\emptyset)$). G is assumed throughout to be a <u>saturated</u>, <u>stable</u>, <u>connected</u> group. We prove:

Theorem A. Let g be a generic of G (over \emptyset), and let X \subseteq G be invariant and internally closed. Then there is a \emptyset -definable normal K \subseteq G such that (i) G/K \subseteq X and (ii) some stationarisation of tp(g/X) is the generic type of a generic coset of K° (the connected component of K).

^{*} Partially supported by NSF Grant DMS 8601289