Notations and symbols

Here are notations and symbols frequently used in this monograph.

• \mathbb{N} = the set of all natural numbers. In this monograph, natural number means positive integer. Thus $0 \notin \mathbb{N}$.

 \mathbb{Z} = the set of all integers.

 \mathbb{Q} = the set of all rational numbers.

 \mathbb{R} = the set of all real numbers.

 \mathbb{C} = the set of all complex numbers.

- $\mathcal{B}(\mathbb{R}^n)$ = the Borel σ -algebra of \mathbb{R}^n , $\mathcal{B}(\mathbb{C})$ = the Borel σ -algebra of \mathbb{C} .
- We denote the *imaginary unit* by $\sqrt{-1}$. The letter 'i' is not used for the imaginary unit, because we wish to use this as an index. For $z \in \mathbb{C}$, let

Re
$$z$$
 = the real part of z ,
Im z = the imaginary part of z ,
 \overline{z} = the conjugate of z .

- μ = the 1-dimensional Lebesgue measure.
- For $a, b \in \mathbb{R}$, let

$$a \lor b = \max\{a, b\}, \ a \land b = \min\{a, b\},\ a^+ = a \lor 0, \ a^- = (-a)^+ = (-a) \lor 0.$$

• For $A \subset X$ where X is a universal set,

$$\mathbf{1}_{A}(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \setminus A, \end{cases}$$
$$A^{\complement} = X \setminus A$$
$$= \{ x \in X : x \notin A \}.$$

 $\mathbf{1}_A$ is called the *defining function* (or *indicator function*) of A, and A^{\complement} the *complement* of A.

• For a set A, card A = the *cardinality* of A. Let \aleph_0 = card \mathbb{N} and \aleph = card \mathbb{R} . \aleph_0 is called the *countable infinite cardinality* and \aleph the *cardinality of the continuum*. When card $A \leq \aleph_0$, i.e., A is at most countable, this is written as #A. #A is the number of elements of A.