Index of main notations

Chap. 1

 $\Omega = \mathcal{C}(\mathbb{R}_+ \to \mathbb{R})$: the space of continuous functions from \mathbb{R}_+ to \mathbb{R} $(X_t, t \ge 0)$: the set of coordinates on this space $(\mathcal{F}_t, t \ge 0)$: the natural filtration of $(X_t, t \ge 0)$ $\mathcal{F}_{\infty} = \mathop{\vee}_{t \ge 0} \mathcal{F}_t$ $b(\mathcal{F}_t)$: the space of bounded real valued \mathcal{F}_t measurable functions $(W_x, x \in \mathbb{R})$: the set of Wiener measures on $(\Omega, \mathcal{F}_{\infty})$ $W = W_0$ $W_x(Y)$: the expectation of the r.v. Y with respect to W_x $(L_t^y, y \in \mathbb{R}, t \ge 0)$: the bicontinuous process of local times $(L_t := L_t^0, t \ge 0)$ the local time at level 0 $(\tau_l := \inf\{t \ge 0; L_t > l\}, l \ge 0)$: the right continuous inverse of $(L_t, t \ge 0)$ q: a positive Radon measure on \mathbb{R} \mathcal{I} : the set of positive Radon measures on \mathbb{R} s.t. $0 < \int_{-\infty}^{\infty} (1+|x|)q(dx) < \infty$ δ_a : the Dirac measure at a $\left(A_t^{(q)} := \int_0^t q(X_s) ds = \int_{\mathbb{R}} L_t^y q(dy), \ t \ge 0\right)$: the additive functional associated with q $(W_{x,\infty}^{(q)}, x \in \mathbb{R})$: the family of probabilities on $(\Omega, \mathcal{F}_{\infty})$ obtained by Feynman-Kac penalisation $(M_{x,s}^{(q)}, s \ge 0)$: the martingale density of $W_{x,\infty}^{(q)}$ with respect to W_x γ_q : a scale function $\varphi_q, \varphi_q^{\pm}$: solutions of the Sturm-Liouville equation $\varphi'' = q\varphi$ $(\mathbf{W}_x, x \in \mathbb{R})$: a family of positive σ -finite measures on $(\Omega, \mathcal{F}_{\infty})$ $L^1(\Omega, \mathcal{F}_{\infty}, \mathbf{W})$ (resp. $L^1_+(\Omega, \mathcal{F}_{\infty}, \mathbf{W})$) : the Banach space of W-integrable r.v.'s (resp. the cone of positive and W-integrable r.v.'s) $(M_t(F), t \ge 0)$: a martingale associated with $F \in L^1(\Omega, \mathcal{F}_\infty, \mathbf{W})$ $g_a := \sup\{s \ge 0 ; X_s = a\}$; $g_0 = g$ $\begin{array}{l} g_a^{(t)} := \sup\{s \leq t, \ X_s = a\} \quad ; \quad g_0^{(t)} = g^{(t)} \\ \sigma_a := \sup\{s \geq 0 \ ; \ X_s \in [-a, a]\} \ ; \quad \sigma_{a,b} := \sup\{s \geq 0 \ ; \ X_s \in [a, b]\} \end{array}$ $f_Z^{(P)}$: density of the r.v. Z under P T: a $(\mathcal{F}_t, t \ge 0)$ stopping time $P_0^{(3)}$ (resp. $\widetilde{P}_0^{(3)}$) : the law of a 3-dimensional Bessel process (resp. of the opposite of a 3-dimensional Bessel process) started at 0 $P_0^{(3,\text{sym})} = \frac{1}{2}(P_0^{(3)} + \widetilde{P}_0^{(3)})$ $W_0^{\tau_l}$: the law of a 1-dimensional Brownian motion stopped at τ_l $\Pi_{0,0}^{(t)}$: the law of the Brownian bridge $(b_u, 0 \le u \le t)$ of length t and s.t. $b_0 = b_t = 0$ $\omega \circ \widetilde{\omega}$: the concatenation of ω and $\widetilde{\omega}$ ($\omega, \widetilde{\omega} \in \Omega$) $\omega = (\omega_t, \omega^t)$: decomposition of ω before and after t $\Gamma^{+} = \big\{ \omega \in \Omega \; ; \; X_{t} \xrightarrow[t \to \infty]{} \infty \big\}, \; \Gamma^{-} = \big\{ \omega \in \Omega \; ; \; X_{t}(\omega) \xrightarrow[t \to \infty]{} -\infty \big\}$ $\mathbf{W}^{+} = \mathbf{1}_{\Gamma^{+}} \cdot \mathbf{W}, \quad \mathbf{W}^{-} = \mathbf{1}_{\Gamma^{-}} \cdot \mathbf{W}$ $W^F(F \in L^1_+(\Omega, \mathcal{F}_\infty, \mathbf{W}))$: the finite measure defined on $(\Omega, \mathcal{F}_\infty)$ by : $W^F(G) = \mathbf{W}(F \cdot G)$ $\mathcal C$: the class of "good" weight processes for which Brownian penalisation holds $(\nu_x^{(q)}, x \in \mathbb{R})$: a family of σ -finite measures associated with the additive functional $(A_t^{(q)}, t \ge 0)$