## Index of main notations

## Chap. 1

$\Omega=\mathcal{C}\left(\mathbb{R}_{+} \rightarrow \mathbb{R}\right)$ : the space of continuous functions from $\mathbb{R}_{+}$to $\mathbb{R}$
$\left(X_{t}, t \geq 0\right)$ : the set of coordinates on this space
$\left(\mathcal{F}_{t}, t \geq 0\right)$ : the natural filtration of $\left(X_{t}, t \geq 0\right)$
$\mathcal{F}_{\infty}=\underset{t \geq 0}{\vee} \mathcal{F}_{t}$
$b\left(\mathcal{F}_{t}\right)$ : the space of bounded real valued $\mathcal{F}_{t}$ measurable functions
$\left(W_{x}, x \in \mathbb{R}\right)$ : the set of Wiener measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$W=W_{0}$
$W_{x}(Y)$ : the expectation of the r.v. $Y$ with respect to $W_{x}$
( $L_{t}^{y}, y \in \mathbb{R}, t \geq 0$ ) : the bicontinuous process of local times
( $L_{t}:=L_{t}^{0}, t \geq 0$ ) the local time at level 0
$\left(\tau_{l}:=\inf \left\{t \geq 0 ; L_{t}>l\right\}, l \geq 0\right):$ the right continuous inverse of $\left(L_{t}, t \geq 0\right)$
$q$ : a positive Radon measure on $\mathbb{R}$
$\mathcal{I}$ : the set of positive Radon measures on $\mathbb{R}$ s.t. $0<\int_{-\infty}^{\infty}(1+|x|) q(d x)<\infty$
$\delta_{a}$ : the Dirac measure at $a$
$\left(A_{t}^{(q)}:=\int_{0}^{t} q\left(X_{s}\right) d s=\int_{\mathbb{R}} L_{t}^{y} q(d y), t \geq 0\right):$ the additive functional associated with $q$
( $\left.W_{x, \infty}^{(q)}, x \in \mathbb{R}\right)$ : the family of probabilities on $\left(\Omega, \mathcal{F}_{\infty}\right)$ obtained by Feynman-Kac penalisation
$\left(M_{x, s}^{(q)}, s \geq 0\right)$ : the martingale density of $W_{x, \infty}^{(q)}$ with respect to $W_{x}$
$\gamma_{q}$ : a scale function
$\varphi_{q}, \varphi_{q}^{ \pm}$: solutions of the Sturm-Liouville equation $\varphi^{\prime \prime}=q \varphi$
$\left(\mathbf{W}_{x}, x \in \mathbb{R}\right)$ : a family of positive $\sigma$-finite measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)$ (resp. $\left.L_{+}^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)\right)$ : the Banach space of
$\mathbf{W}$-integrable r.v.'s (resp. the cone of positive and $\mathbf{W}$-integrable r.v.'s)
$\left(M_{t}(F), t \geq 0\right):$ a martingale associated with $F \in L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)$
$g_{a}:=\sup \left\{s \geq 0 ; X_{s}=a\right\} \quad ; \quad g_{0}=g$
$g_{a}^{(t)}:=\sup \left\{s \leq t, X_{s}=a\right\} \quad ; \quad g_{0}^{(t)}=g^{(t)}$
$\sigma_{a}:=\sup \left\{s \geq 0 ; X_{s} \in[-a, a]\right\} ; \sigma_{a, b}:=\sup \left\{s \geq 0 ; X_{s} \in[a, b]\right\}$
$f_{Z}^{(P)}$ : density of the r.v. $Z$ under $P$
$T:$ a $\left(\mathcal{F}_{t}, t \geq 0\right)$ stopping time
$P_{0}^{(3)}$ (resp. $\widetilde{P}_{0}^{(3)}$ ): the law of a 3-dimensional Bessel process (resp. of the opposite of a 3 -dimensional Bessel process) started at 0
$P_{0}^{(3, \text { sym })}=\frac{1}{2}\left(P_{0}^{(3)}+\widetilde{P}_{0}^{(3)}\right)$
$W_{0}^{\tau_{l}}$ : the law of a 1-dimensional Brownian motion stopped at $\tau_{l}$
$\Pi_{0,0}^{(t)}$ : the law of the Brownian bridge $\left(b_{u}, 0 \leq u \leq t\right)$ of length $t$ and s.t. $b_{0}=b_{t}=0$
$\omega \circ \widetilde{\omega}$ : the concatenation of $\omega$ and $\widetilde{\omega}(\omega, \widetilde{\omega} \in \Omega)$
$\omega=\left(\omega_{t}, \omega^{t}\right)$ : decomposition of $\omega$ before and after $t$
$\Gamma^{+}=\left\{\omega \in \Omega ; X_{t} \xrightarrow[t \rightarrow \infty]{\longrightarrow} \infty\right\}, \Gamma^{-}=\left\{\omega \in \Omega ; X_{t}(\omega) \underset{t \rightarrow \infty}{\longrightarrow}-\infty\right\}$
$\mathbf{W}^{+}=1_{\Gamma^{+}} \cdot \mathbf{W}, \quad \mathbf{W}^{-}=1_{\Gamma^{-}} \cdot \mathbf{W}$
$W^{F}\left(F \in L_{+}^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)\right)$ : the finite measure defined on $\left(\Omega, \mathcal{F}_{\infty}\right)$ by : $W^{F}(G)=\mathbf{W}(F \cdot G)$
$\mathcal{C}$ : the class of "good" weight processes for which Brownian penalisation holds
$\left(\nu_{x}^{(q)}, x \in \mathbb{R}\right)$ : a family of $\sigma$-finite measures associated with the additive functional $\left(A_{t}^{(q)}, t \geq 0\right)$

