ON ω_{1}-COMPLETE FILTERS

Hans-Dieter Donder

Let us start with a definition. For an uncountable cardinal κ set $\mu(\kappa)=\min \left\{|H| \mid H\right.$ is a set of ω_{1}-complete uniform filters on κ and

$$
\forall A \subseteq \kappa \exists F \in H(A \in F \text { or } \kappa-A \in F)\}
$$

Clearly, $1 \leq \mu(\kappa) \leq 2^{\kappa}$.
A classical result of Ulam says that κ must be very large, if $\mu(\kappa)=1$. On the other hand, by definition we have that $\mu(\kappa)=1$ if κ is bigger than some strongly compact cardinal. Only recently (see [3]) Gitik has shown that $\mu(\kappa) \leq \omega$ implies that $\mu(\kappa)=1$.

Can $\mu(\kappa)$ be small for small cardinals κ ? Using a huge cardinal, Magidor showed in [4] that $\mu\left(\omega_{3}\right) \leq \omega_{3}$ is consistent. Shelah constructed a model of $\mu\left(\omega_{1}\right)=\omega_{1}$ starting with many supercompact cardinals (see [6]). With an almost huge cardinal Woodin produced a model where $\mu\left(\omega_{1}\right)=\omega_{1}$ is witnessed by normal filters. It seems to be an open problem whether $\mu\left(\omega_{2}\right)=\omega_{1}$ is consistent.

In this note we treat the following question. Is there always some κ such that $\mu(\kappa) \leq \kappa$? Prikry showed in [5] that $\mu\left(\omega_{1}\right)>\omega_{1}$ is consistent. Jensen showed later that the appropriate combinatorial principle holds in L which implies that $\mu\left(\omega_{1}\right)>\omega_{1}$ is true in L. We shall show:

Theorem 1. Assume $V=L$. Then $\mu(\kappa)>\kappa$ for all regular $\kappa>\omega$.
To prove this we reduce the problem to a purely combinatorial question. So let us introduce the following principle. Let $\kappa>\omega$ be regular. Then Q_{κ} denotes the following property:

There is some $G \subseteq\{f \mid f: \kappa \rightarrow 2\}$ such that $|G|>\kappa$ and for all $G^{*} \subseteq G$ such that $\left|G^{*}\right|>\kappa$ there is a countable $\bar{G} \subseteq G^{*}$ such that $\{\alpha<\kappa \mid \forall f, g \in \bar{G}, f(\alpha)=g(\alpha)\}$ is nonstationary.

This principle is closely related to some properties discussed in [7]. So the interested reader might also consult that paper. Now we have:

Lemma 1. Let $\kappa>\omega$ be regular and assume that Q_{κ} holds. Then $\mu(\kappa)>\kappa$.
Proof. Assume not. Let $\mu(\kappa) \leq \kappa$ be given by H. By a result of Taylor (see [8]) we may assume that all $F \in H$ contain the club filter on κ. Let Q_{κ} be given by G. For each $f \in G$ choose $F_{f} \in H$ and $i_{f}<2$ such that $\left\{\alpha<\kappa \mid f(\alpha)=i_{f}\right\} \in F_{f}$. Then there are $G^{*} \subseteq G, i<2, F \in H$ such that

