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32 Σ} equivalence relations

Theorem 32.1 (Burgess [14]) Suppose E is a §} equivalence relation. Then
either E has < ω\ equivalence classes or there exists a perfect set of pairwise
E-inequivalent reals.

proof:
We will need to prove the boundedness theorem for this result. Define

WF = {T C ω<ω : Tis a well-founded tree}.

For a <ωχ define WF<a to the subset of WF of all well-founded trees of rank
< a. WF is a complete Π* set, i.e., for every B Cωω which is Πj there exists a
continuous map / such that f~ι(WF) = B (see Theorem 17.4). Consequently,
WF is not Borel. On the other hand each of the WF<a are Borel.

Lemma 32.2 For each a < ω\ the set WF<a is Borel.

proof:
Define for s G u<ω and a < ω\

WFs

<a = { T C α ; < ω : T i s a tree, sGT, rτ(s) < α}.

The fact that WF<a is Borel is proved by induction on α. The set of trees is
Πf. For λ a limit

For a successor a + 1

T £ WFs

<aJtl iff s e T and Vn (ineT->Te WF&).

Another way to prove this is take a tree T of rank α and note that WF<a =
{f \f <T) and this set is A\ and hence Borel by Theorem 26.1.

Lemma 32.3 (Boundedness) If A C WF is Σ} ; then there exists a < ω\ such
thatACWFQ.

proof:
Suppose no such a exists. Then

T e WF iff there exists TeA such that T <f.

But this would give a Σ | definition of WF, contradiction.
•

There is also a lightface version of the boundedness theorem, i.e., if A is
a Σ\ subset of WF, then there exists a recursive ordinal a < ωfκ such that
AC WF<a. Otherwise,


