32 Σ_1^1 equivalence relations

Theorem 32.1 (Burgess [14]) Suppose E is a Σ_1^1 equivalence relation. Then either E has $\leq \omega_1$ equivalence classes or there exists a perfect set of pairwise E-inequivalent reals.

proof:

We will need to prove the boundedness theorem for this result. Define

 $WF = \{T \subseteq \omega^{<\omega} : T \text{ is a well-founded tree} \}.$

For $\alpha < \omega_1$ define $WF_{<\alpha}$ to the subset of WF of all well-founded trees of rank $< \alpha$. WF is a complete Π_1^1 set, i.e., for every $B \subseteq \omega^{\omega}$ which is Π_1^1 there exists a continuous map f such that $f^{-1}(WF) = B$ (see Theorem 17.4). Consequently, WF is not Borel. On the other hand each of the $WF_{<\alpha}$ are Borel.

Lemma 32.2 For each $\alpha < \omega_1$ the set $WF_{<\alpha}$ is Borel.

proof:

Define for $s \in \omega^{<\omega}$ and $\alpha < \omega_1$

 $WF_{\leq \alpha}^s = \{T \subseteq \omega^{<\omega} : T \text{ is a tree, } s \in T, r_T(s) < \alpha\}.$

The fact that $WF^s_{\leq \alpha}$ is Borel is proved by induction on α . The set of trees is Π^0_1 . For λ a limit

$$WF^{s}_{<\lambda} = \bigcup_{\alpha < \lambda} WF^{s}_{<\alpha}.$$

For a successor $\alpha + 1$

 $T \in WF^{s}_{\leq \alpha+1}$ iff $s \in T$ and $\forall n \ (s \ n \in T \to T \in WF^{s \ n}_{\leq \alpha})$.

Another way to prove this is take a tree T of rank α and note that $WF_{<\alpha} = \{\hat{T} : \hat{T} \prec T\}$ and this set is Δ_1^1 and hence Borel by Theorem 26.1.

Lemma 32.3 (Boundedness) If $A \subseteq WF$ is Σ_1^1 , then there exists $\alpha < \omega_1$ such that $A \subseteq WF_{\alpha}$.

proof:

Suppose no such α exists. Then

$$T \in WF$$
 iff there exists $T \in A$ such that $T \preceq T$.

But this would give a Σ_1^1 definition of WF, contradiction.

There is also a lightface version of the boundedness theorem, i.e., if A is a Σ_1^1 subset of WF, then there exists a recursive ordinal $\alpha < \omega_1^{CK}$ such that $A \subseteq WF_{\leq \alpha}$. Otherwise,