31 Borel metric spaces and lines in the plane

We give two applications of Harrington's technique of using Gandy forcing. First let us begin by isolating a principal which we call overflow. It is an easy consequence of the Separation Theorem.

Lemma 31.1 (Overflow) Suppose $\theta(x_1, x_2, ..., x_n)$ is a Π_1^1 formula and A is a Σ_1^1 set such that

$$\forall x_1,\ldots,x_n\in A\ \theta(x_1,\ldots,x_n).$$

Then there exists a Δ_1^1 set $D \supseteq A$ such that

$$\forall x_1,\ldots,x_n\in D\ \theta(x_1,\ldots,x_n).$$

proof:

For n = 1 this is just the Separation Theorem 27.5.

For n=2 define

$$B = \{x : \forall y (y \in A \to \theta(x, y))\}.$$

Then B is Π_1^1 set which contains A. Hence by separation there exists a Δ_1^1 set E with $A \subseteq E \subseteq B$. Now define

$$C = \{x : \forall y (y \in E \to \theta(x, y))\}.$$

Then C is a Π_1^1 set which also contains A. By applying separation again we get a Δ_1^1 set F with $A \subseteq F \subseteq C$. Letting $D = E \cap F$ does the job. The proof for n > 2 is similar.

We say that (B, δ) is a Borel metric space iff B is Borel, δ is a metric on B, and for every $\epsilon \in \mathbb{Q}$ the set

$$\{(x,y)\in B^2:\delta(x,y)\leq\epsilon\}$$

is Borel.

Theorem 31.2 (Harrington [39]) If (B, δ) is a Borel metric space, then either (B, δ) is separable (i.e., contains a countable dense set) or for some $\epsilon > 0$ there exists a perfect set $P \subseteq B$ such that $\delta(x, y) > \epsilon$ for every distinct $x, y \in P$.

proof:

By relativizing the proof to an arbitrary parameter we may assume that B and the sets $\{(x,y) \in B^2 : \delta(x,y) \le \epsilon\}$ are Δ_1^1 .

Lemma 31.3 For any $\epsilon \in \mathbb{Q}^+$ if $A \subseteq B$ is Σ_1^1 and the diameter of A is less than ϵ , then there exists a Δ_1^1 set D with diameter less than ϵ and $A \subseteq D \subseteq B$.