25 Large Π_2^1 sets

A set is $\underline{\Pi}_2^1$ iff it is the complement of a $\underline{\Sigma}_2^1$ set. Unlike $\underline{\Sigma}_2^1$ sets which cannot have size strictly in between ω_1 and the continuum (Theorem 21.1), $\underline{\Pi}_2^1$ sets can be practically anything.¹¹

Theorem 25.1 (Harrington [35]) Suppose V is a model of set theory which satisfies $\omega_1 = \omega_1^L$ and B is arbitrary subset of ω^{ω} in V. Then there exists a ccc extension of V, V[G], in which B is a Π_2^1 set.

proof:

Let \mathbb{P}_B be the following poset. $p \in \mathbb{P}_B$ iff p is a finite consistent set of sentences of the form:

- 1. " $[s] \cap \mathring{C}_n = \emptyset$ ", or
- 2. " $x \in \overset{\circ}{C}_n$, where $x \in B$.

This partial order is isomorphic to Silver's view of almost disjoint sets forcing (Theorem 5.1). So forcing with \mathbb{P}_B creates an F_{σ} set $\bigcup_{n \in \omega} C_n$ so that

$$\forall x \in \omega^{\omega} \cap V(x \in B \text{ iff } x \in \bigcup_{n < \omega} C_n).$$

Forcing with the direct sum of ω_1 copies of \mathbb{P}_B , $\prod_{\alpha < \omega_1} \mathbb{P}_B$, we have that

$$\forall x \in \omega^{\omega} \cap V[\langle G_{\alpha} : \alpha < \omega_1 \rangle] (x \in B \text{ iff } x \in \bigcap_{\alpha < \omega_1} \cup_{n < \omega} C_n^{\alpha}).$$

One way to see this is as follows. Note that in any case

$$B\subseteq \bigcap_{\alpha<\omega_1}\cup_{n<\omega}C_n^\alpha.$$

So it is the other implication which needs to be proved. By ccc, for any $x \in V[\langle G_{\alpha} : \alpha < \omega_1 \rangle]$ there exists $\beta < \omega_1$ with $x \in V[\langle G_{\alpha} : \alpha < \beta \rangle]$. But considering $V[\langle G_{\alpha} : \alpha < \beta \rangle]$ as the new ground model, then G_{β} would be \mathbb{P}_{B^-} generic over $V[\langle G_{\alpha} : \alpha < \beta \rangle]$ and hence if $x \notin B$ we would have $x \notin \bigcup_{n < \omega} C_n^{\beta}$.

Another argument will be given in the proof of the next lemma.

Lemma 25.2 Suppose $\langle c_{\alpha} : \alpha < \omega_1 \rangle$ be a sequence in V of elements of ω^{ω} and $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ is a sequence in $V[\langle G_{\alpha} : \alpha < \omega_1 \rangle]$ of elements of 2^{ω} . Using Silver's forcing add a sequence of Π_2^0 sets $\langle U_n : n < \omega \rangle$ such that

$$\forall n \in \omega \forall \alpha < \omega_1(a_\alpha(n) = 1 \text{ iff } c_\alpha \in U_n).$$

Then

$$V[\langle G_{\alpha}: \alpha < \omega_1 \rangle][\langle U_n: n < \omega \rangle] \models \forall x \in \omega^{\omega} \ (x \in B \ iff \ x \in \bigcap_{\alpha < \omega_1} \cup_{n < \omega} C_n^{\alpha}).$$

¹¹ It's life Jim, but not as we know it.- Spock of Vulcan