21 Mansfield-Solovay Theorem

Theorem 21.1 (Mansfield [70], Solovay [101]) If $A \subseteq \omega^{\omega}$ is a Σ_2^1 set with constructible parameter which contains a nonconstructible element of ω^{ω} , then A contains a perfect set which is coded in L.

proof:

By Shoenfield's Theorem 20.1, we may assume A = p[T] where $T \in L$ and $T \subseteq \bigcup_{n < \omega} \omega_1^n \times \omega^n$. Working in L define the following decreasing sequence of subtrees as follows.

 $T_0 = T$,

 $T_{\lambda} = \bigcap_{\beta < \lambda} T_{\beta}$, if λ a limit ordinal, and

 $T_{\alpha+1} = \{(r, s) \in T_{\alpha} : \exists (r_0, s_0), (r_1, s_1) \in T_{\alpha} \text{ such that } (r_0, s_0), (r_1, s_1) \text{ extend}$ (r, s), and s_0 and s_1 are incompatible}.

Each T_{α} is tree, and for $\alpha < \beta$ we have $T_{\beta} \subseteq T_{\alpha}$. Thus there exists some α_0 such that $T_{\alpha_0+1} = T_{\alpha_0}$.

Claim: $[T_{\alpha_0}]$ is nonempty.

proof:

Let $(x, y) \in [T]$ be any pair with y not constructible. Since A = p[T] and A is not a subset of L, such a pair must exist. Prove by induction on α that $(x, y) \in [T_{\alpha}]$. This is easy for α a limit ordinal. So suppose $(x, y) \in [T_{\alpha}]$ but $(x, y) \notin [T_{\alpha+1}]$. By the definition it must be that there exists $n < \omega$ such that $(x \upharpoonright n, y \upharpoonright n) = (r, s) \notin T_{\alpha+1}$. But in L we can define the tree:

$$T_{\alpha}^{(r,s)} = \{ (\hat{r}, \hat{s}) \in T_{\alpha} : (\hat{r}, \hat{s}) \subseteq (r,s) \text{ or } (r,s) \subseteq (\hat{r}, \hat{s}) \}$$

which has the property that $p[T_{\alpha}^{(r,s)}] = \{y\}$. But by absoluteness of well-founded trees, it must be that there exists $(u, y_0) \in [T_{\alpha}^{(r,s)}]$ with $(u, y_0) \in L$. But then $y_0 = y \in L$ which is a contradiction. This proves the claim.

Since $T_{\alpha_0+1} = T_{\alpha_0}$, it follows that for every $(r, s) \in T_{\alpha_0}$ there exist

$$(r_0, s_0), (r_1, s_1) \in T_{\alpha_0}$$

such that $(r_0, s_0), (r_1, s_1)$ extend (r, s) and s_0 and s_1 are incompatible. This allows us to build by induction (working in L):

$$\langle (r_{\sigma}, s_{\sigma}) : \sigma \in 2^{<\omega} \rangle$$

with $(r_{\sigma}, s_{\sigma}) \in T_{\alpha_0}$ and for each $\sigma \in 2^{<\omega}$ $(r_{\sigma_0}, s_{\sigma_0}), (r_{\sigma_1}, s_{\sigma_1})$ extend (r_{σ}, s_{σ}) and s_{σ_0} and s_{σ_1} are incompatible. For any $q \in 2^{\omega}$ define

$$x_q = \bigcup_{n < \omega} r_{q \restriction n}$$
 and $y_q = \bigcup_{n < \omega} s_{q \restriction n}$.

Then we have that $(x_q, y_q) \in [T_{\alpha_0}]$ and therefore $P = \{y_q : q \in 2^{\omega}\}$ is a perfect set such that

$$P \subseteq p[T_{\alpha_0}] \subseteq p[T] = A$$