Part II Analytic sets

17 Analytic sets

Analytic sets were discovered by Souslin when he encountered a mistake of Lebesgue. Lebesgue had erroneously proved that the Borel sets were closed under projection. I think the mistake he made was to think that the countable intersection commuted with projection. A good reference is the volume devoted to analytic sets edited by Rogers [91]. For the more classical viewpoint of operation-A, see Kuratowski [57]. For the whole area of descriptive set theory and its history, see Moschovakis [87].

Definition. A set $A \subseteq \omega^{\omega}$ is Σ_1^1 iff there exists a recursive

$$R \subseteq \bigcup_{n \in \omega} (\omega^n \times \omega^n)$$

such that for all $x \in \omega^{\omega}$

$$x \in A \text{ iff } \exists y \in \omega^{\omega} \ \forall n \in \omega \ R(x \restriction n, y \restriction n).$$

A similar definition applies for $A \subseteq \omega$ and also for $A \subseteq \omega \times \omega^{\omega}$ and so forth. For example, $A \subseteq \omega$ is Σ_1^1 iff there exists a recursive $R \subseteq \omega \times \omega^{<\omega}$ such that for all $m \in \omega$

$$m \in A \text{ iff } \exists y \in \omega^{\omega} \ \forall n \in \omega \ R(m, y \restriction n).$$

A set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ is Π_1^0 iff there exists a recursive predicate

$$R \subseteq \bigcup_{n \in \omega} (\omega^n \times \omega^n)$$

such that

$$C = \{(x, y) : \forall n \ R(x \upharpoonright n, y \upharpoonright n)\}.$$

That means basically that C is a recursive closed set.

The II classes are the complements of the Σ 's and Δ is the class of sets which are both II and Σ . The relativized classes, e.g. $\Sigma_1^1(x)$ are obtained by allowing R to be recursive in x, i.e., $R \leq_T x$. The boldface classes, e.g., Σ_1^1 , Π_1^1 , are obtained by taking arbitrary R's.

Lemma 17.1 $A \subseteq \omega^{\omega}$ is Σ_1^1 iff there exists set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ which is Π_1^0 and

$$A = \{ x \in \omega^{\omega} : \exists y \in \omega^{\omega} \ (x, y) \in C \}.$$

Lemma 17.2 The following are all true:

1. For every $s \in \omega^{<\omega}$ the basic clopen set $[s] = \{x \in \omega^{\omega} : s \subseteq x\}$ is Σ_1^1 ,