8 Boolean algebras

In this section we consider the length of Borel hierarchies generated by a subset of a complete boolean algebra. We find that the generators of the complete boolean algebra associated with α -forcing generate it in exactly $\alpha + 1$ steps. We start by presenting some background information.

Let $\mathbb B$ be a cBa, i.e, complete boolean algebra. This means that in addition to being a boolean algebra, infinite sums and products, also exist; i.e., for any $C \subseteq \mathbb B$ there exists b (denoted $\sum C$) such that

- 1. $c \leq b$ for every $c \in C$ and
- 2. for every $d \in \mathbb{B}$ if $c \leq d$ for every $c \in C$, then b < d.

Similarly we define $\prod C = -\sum_{c \in C} -c$ where -c denotes the complement of c in \mathbb{B} .

A partial order \mathbb{P} is *separative* iff for any $p, q \in \mathbb{P}$ we have

$$p \leq q$$
 iff $\forall r \in \mathbb{P}(r \leq p \text{ implies } q, r \text{ compatible}).$

Theorem 8.1 (Scott, Solovay see [43]) A partial order \mathbb{P} is separative iff there exists a cBa \mathbb{B} such that $\mathbb{P} \subseteq \mathbb{B}$ is dense in \mathbb{B} , i.e. for every $b \in \mathbb{B}$ if b > 0 then there exists $p \in \mathbb{P}$ with $p \leq b$.

It is easy to check that the α -forcing \mathbb{P} is separative (as long as \mathcal{B} is infinite): If $p \not\leq q$ then either

- 1. t_p does not extend t_q , so there exists s such that $t_q(s) = B$ and either s not in the domain of t_p or $t_p(s) = C$ where $C \neq B$ and so in either case we can find $r \leq p$ with r, q incompatible, or
- 2. F_p does not contain F_q , so there exists $(s, x) \in (F_q \setminus F_p)$ and we can either add $(s \hat{n}, x)$ for sufficiently large n or add $t_r(s \hat{n}) = B$ for some sufficiently large n and some $B \in \mathcal{B}$ with $x \in B$ and get $r \leq p$ which is incompatible with q.

The elegant (but as far as I am concerned mysterious) approach to forcing using complete boolean algebras contains the following facts:

1. for any sentence θ in the forcing language

$$[\![\theta]\!] = \sum \{b \in \mathbb{B} : b \mid \vdash \theta \} = \sum \{p \in \mathbb{P} : p \mid \vdash \theta \}$$

where \mathbb{P} is any dense subset of \mathbb{B} ,

- 2. $p \Vdash \theta \text{ iff } p \leq [\theta],$
- 3. $[\neg \theta] = -[\theta]$,