6 Generic G_{δ}

It is natural⁴ to ask

"What are the possibly lengths of Borel hierarchies?"

In this section we present a way of forcing a generic G_{δ} .

Let X be a Hausdorff space with a countable base \mathcal{B} . Consider the following forcing notion.

 $p \in \mathbb{P}$ iff it is a finite consistent set of sentences of the form:

- 1. " $B \subseteq \overset{\circ}{U}_n$ " where $B \in \mathcal{B}$ and $n \in \omega$, or
- 2. " $x \notin \overset{\circ}{U}_n$ " where $x \in X$ and $n \in \omega$, or

3. "
$$x \in \bigcap_{n < \omega} \mathring{U}_n$$
" where $x \in X$.

Consistency means that we cannot say that both " $B \subseteq \overset{\circ}{U}_n$ " and " $x \notin \overset{\circ}{U}_n$ " if it happens that $x \in B$ and we cannot say both " $x \notin \overset{\circ}{U}_n$ " and " $x \in \bigcap_{n < \omega} \overset{\circ}{U}_n$ ". The ordering is reverse inclusion. A \mathbb{P} filter G determines a G_{δ} set U as follows: Let

$$U_n = \bigcup \{ B \in \mathcal{B} : "B \subseteq \mathring{U}_n " \in G \}.$$

Let $U = \bigcap_n U_n$. If G is P-generic over V, a density argument shows that for every $x \in X$ we have that

$$x \in U$$
 iff " $x \in \bigcap_{n < \omega} \mathring{U}_n$ " $\in G$.

Note that U is not in V (as long as X is infinite). For suppose $p \in \mathbb{P}$ and $A \subseteq X$ is in V is such that

$$p \Vdash \overset{\circ}{U} = \check{A}.$$

Since X is infinite there exist $x \in X$ which is not mentioned in p. Note that $p_0 = p \cup \{ x \in \bigcap_{n < \omega} U_n \}$ is consistent and also $p_1 = p \cup \{ x \notin U_n \}$ is consistent for all sufficiently large n (i.e. certainly for U_n not mentioned in p.) But $p_0 \models x \in U$ and $p_1 \models x \notin U$, and since x is either in A or not in A we arrive at a contradiction.

In fact, U is not F_{σ} in the extension (assuming X is uncountable). To see this we will first need to prove that \mathbb{P} has ccc.

Lemma 6.1 P has ccc.

proof:

Note that p and q are compatible iff $(p \cup q) \in \mathbb{P}$ iff $(p \cup q)$ is a consistent set of sentences. Recall that there are three types of sentences:

⁴ 'Gentlemen, the great thing about this, like most of the demonstrations of the higher mathematics, is that it can be of no earthly use to anybody.' -Baron Kelvin