6 Generic *Gs*

It is natural⁴ to ask

"What are the possibly lengths of Borel hierarchies?"

In this section we present a way of forcing a generic G_{δ} .

Let *X* be a Hausdorff space with a countable base *B.* Consider the following forcing notion.
 $p \in \mathbb{P}$ iff it is a finite consistent set of sentences of the form:

- 1. " $B \subseteq \mathring{U}_n$ " where $B \in \mathcal{B}$ and $n \in \omega$, or
- 2. " $x \notin \mathring{U}_n$ " where $x \in X$ and $n \in \omega$, or

3.
$$
x \in \bigcap_{n < \omega} \hat{U}_n
$$
 where $x \in X$.

Consistency means that we cannot say that both " $B \subseteq \stackrel{\circ}{U}_n$ " and "x $\notin \stackrel{\circ}{U}_n$ " if it happens that $x \in B$ and we cannot say both " $x \notin \mathcal{U}_n$ " and " $x \in \bigcap_{n \leq \omega} \mathcal{U}_n$ ". The ordering is reverse inclusion. A ${\mathbb P}$ filter G determines a G_δ set U as follows: Let

$$
U_n = \bigcup \{ B \in \mathcal{B} : "B \subseteq \overset{\circ}{U}_n \text{ " } \in G \}.
$$

Let $U = \bigcap_n U_n$. If G is P-generic over V, a density argument shows that for every $x \in X$ we have that

$$
x \in U \text{ iff } "x \in \bigcap_{n < \omega} \mathring{U}_n \text{ } " \in G.
$$

Note that U is not in V (as long as X is infinite). For suppose $p \in \mathbb{P}$ and $A \subseteq X$ is in V is such that

$$
p \Vdash \check{U} = \check{A}.
$$

Since X is infinite there exist $x \in X$ which is not mentioned in p. Note that $p_0 = p \cup \{x \in \bigcap_{n \leq w} \hat{v}_n \}$ is consistent and also $p_1 = p \cup \{x \notin \hat{v}_n \}$ is consistent for all sufficiently large *n* (i.e. certainly for U_n not mentioned in p .) But $p_0 \not\Vdash x \in \stackrel{\circ}{U}$ and $p_1 \not\Vdash x \notin \stackrel{\circ}{U}$, and since x is either in *A* or not in *A* we arrive at a contradiction.
In fact, U is no

In fact, U is not F_{σ} in the extension (assuming X is uncountable). To see
we will first need to prove that \mathbb{R} has see this we will first need to prove that $\mathbb P$ has ccc.

Lemma 6.1 P *has ccc.*

proof:

Note that p and q are compatible iff $(p \cup q) \in \mathbb{P}$ iff $(p \cup q)$ is a consistent set of sentences. Recall that there are three types of sentences:

⁴ 'Gentlemen, the great thing about this, like most of the demonstrations of the higher mathematics, is that it can be of no earthly use to anybody.' -Baron Kelvin