5. PARTIAL CONSERVATIVITY

A sentence φ is Γ -conservative over T if for every Γ sentence θ , if $T + \varphi \vdash \theta$, then T $\vdash \theta$. In this chapter we study this phenomenon for its own sake. Results on Γ -conservativity are, however, also very useful in many contexts, in particular in connection with interpretability (see Chapters 6 and 7).

Our task in this chapter is to develop general methods for constructing partially conservative sentences satisfying additional conditions such as being nonprovable in a given theory.

We assume throughout that PA IT. The results of this chapter do not depend on the assumption that T is reflexive.

A first example of a Π_1 -conservative sentence is given in the following:

Theorem 1. \neg Con_T is Π_1 –conservative over T.

```
Proof. Suppose \theta is \Pi_1 and
```

```
(1) T + \neg Con_T \vdash \theta.
```

From (1) we get $PA \vdash Pr_T(\neg \theta) \rightarrow Pr_T(Con_T)$, whence

(2) PAF $\Pr_{T}(\neg \theta) \rightarrow \neg Con_{T+\neg Con_{T}}$.

By provable Σ_1 -completeness,

(3) $PA \vdash \neg \theta \rightarrow Pr_T(\neg \theta).$

By Corollary 2.2,

```
(4) PA + Con<sub>T</sub>\vdash Con<sub>T+¬Con<sub>T</sub></sub>.
```

Combining (2), (3), (4) we get $PA \vdash \neg \theta \rightarrow \neg Con_T$ and so by (1), $T \vdash \theta$.

By Corollary 2.4, Theorem 1 provides us with an example of a (Σ_1) sentence φ which is Π_1 -conservative over T and nontrivially so, i.e. such that T $\nvDash \varphi$, even if T is not Σ_1 -sound.

If φ is Γ -conservative over T and ψ is Γ^d , then clearly φ is Γ -conservative over T + ψ . Also note that if T is Σ_1 -sound and π is Π_1 , then π is Σ_1 -conservative over T iff π is true iff T + π is consistent.

Let us now try to construct a sentence ϕ which is nontrivially $\Gamma\text{--conservative}$ over T. Thus, given that

(1) $T + \varphi \vdash \theta$,

where θ is Γ , we want to be able to conclude that T $\vdash \theta$. This follows if (1) implies that

(2) $T + \neg \theta \vdash \varphi$.

The natural way to ensure that (1) implies (2) is to let φ be a sentence saying of itself that there is a false Γ sentence (namely θ) which φ implies in T. Thus, let φ be such that

(3) $PA \vdash \phi \leftrightarrow \exists u(\Gamma(u) \land Pr_{T+\phi}(u) \land \neg Tr_{\Gamma}(u)),$

where $\Gamma(x)$ is a PR binumeration of the set of Γ sentences. Then (1) implies (2).