Intervals Without Critical Triples

Peter Cholak

Department of Mathematics University of Notre Dame Notre Dame, IN 46556-5683, USA cholak@turing.math.nd.edu

Rod Downey

Department of Mathematics Victoria University of Wellington Wellington, New Zealand rod.downey@vuw.ac.nz

Richard Shore *

Department of Mathematics White Hall, Cornell University Ithaca, NY 14853, USA shore@math.cornell.edu

Abstract. This paper is concerned with the construction of intervals of computably enumerable degrees in which the lattice M_5 (see Figure 1) cannot be embedded. Actually, we construct intervals \mathcal{I} of computably enumerable degrees without any weak critical triples (this implies that M_5 cannot be embedded in \mathcal{I} , see Section 2). Our strongest result is that there is a low₂ computably enumerable degree e such that there are no weak critical triples in either of the intervals [0, e] or [e, 0'].

1 Introduction

A set of natural numbers is computably (or recursively) enumerable if it is the range of a function computed by a Turing machine. We say one set of natural numbers, A, is Turing computable from another, B, if there is a Turing machine, which using an oracle for B, computes A. Equivalence classes under this

^{*} Research partially supported by a Mathematical Sciences Postdoctoral Research Fellowship (Cholak); ARO through MSI, Cornell University, DAAL-03-C-0027 (Cholak, Downey, Shore); a U.S.-New Zealand Binational Cooperative Research grant NSF INT 90-20558 (Cholak, Downey and Shore); IGC of Victoria University, Wellington (Downey); New Zealand Marsden Fund for Basic Science under contract number VIC-509 (Downey) and NSF Grants DMS-9204308 and DMS-9503503 (Shore).