$$z = \overline{\chi_P}(y) \longmapsto Seq(z) \& lh(z) = y \& (\forall i < y)((z)_i = \chi_P(i)).$$

Hence by the table, it will suffice to show that $w = \chi_P(i)$ is Σ_{n+1}^0 . Since P is Π_n^0 , this follows from

$$w = \chi_P(i) \mapsto (w = 1 \& P(i)) \lor (w = 0 \& \neg P(i))$$

and the table. \square

14.9. COROLLARY. A relation is Δ_{n+1}^0 iff it is recursive in Π_n^0 .

Proof. A relation R is Δ_{n+1}^0 iff both R and $\neg R$ are Σ_{n+1}^0 ; hence, by Post's Theorem, iff both R and $\neg R$ are RE in \prod_n^0 . By the relativized version of 14.6, this holds iff R is recursive in $\prod_{n=1}^{0} \square$

Since $\neg R$ is recursive in R and $R = \neg \neg R$ is recursive in $\neg R$, 12.4 and the table show that we can replace $\prod_{n=1}^{0} p \sum_{n=1}^{0} p$ in both Post's Theorem and its corollary.

15. Degrees

If F and G are total functions, we let $F \leq_{\mathbf{R}} G$ mean that F is recursive in G. By 12.5,

(1) $F \leq_{\mathbf{R}} F;$

and by the Transitivity Theorem

(2)
$$F \leq_{\mathbf{R}} G \& G \leq_{\mathbf{R}} H \to F \leq_{\mathbf{R}} H.$$

Let $F \equiv_{\mathbb{R}} G$ mean $F \leq_{\mathbb{R}} G \& G \leq_{\mathbb{R}} F$. It follows from (1) and (2) that $\equiv_{\mathbb{R}}$ is an equivalence relation. The equivalence class of F is called the <u>degree</u> of F and is designated by dg F. By a <u>degree</u>, we mean the degree of some total function. We use small boldface letters, usually **a**, **b**, **c**, and **d**, for degrees.

We let $dg(F) \leq dg(G)$ if $F \leq_{\mathbf{R}} G$. By (2), this depends only on dg(F) and dg(G), not on the choice of F and G in these equivalence classes. It follows from (1) and (2) that \leq is a partial ordering of the degrees, i.e., that

a ≤ a,

$$\mathbf{a} \leq \mathbf{b} \& \mathbf{b} \leq \mathbf{a} \rightarrow \mathbf{a} = \mathbf{b},$$