definition of this function has a new clause for each r.

 $Reg(j,e,x,n+1) = H_r(Reg((i)_1,e,x,n))$ if $(i)_0 = 3 \& (i)_3 = r \& (i)_2 = j$. This means that in the definition of $T_k^{\Phi}(e,\vec{x},y)$, H_r appears only in contexts $H_r(X)$ where X designates a number appearing in a register during the *P*-computation from \hat{x} and hence < y. Thus we may replace $H_r(X)$ by $(H_r(y))_X$.

If Φ is $H_1, ..., H_m$, we write $\overline{\Phi}(z)$ for $\overline{H_1}(z), ..., \overline{H_m}(z)$. The above can be summarized as follows: there is a recursive relation $T_{k,m}$ such that

(1) $T_k^{\Phi}(e, \vec{x}, y) \mapsto T_{k,m}(e, \vec{x}, y, \overline{\Phi}(y)).$ Thus if $\{e\}^{\Phi}(\hat{x}) \simeq z$ with computation number y, and $\overline{\Phi}(y) = \overline{\Phi'}(y)$, then $\{e\}^{\Phi'}(\hat{x}) \simeq z.$

13. The Arithmetical Hierarchy

We are now going to study the effect of using unbounded quantifiers in definitions of relations. From now on, we agree that n designates a non-zero number. The results of this section are due to Kleene.

A relation R is <u>arithmetical</u> if it has an explicit definition

(1)
$$R(\vec{x}) \longleftrightarrow \mathcal{Q}y_1 ... \mathcal{Q}y_n P(\vec{x}, y_1, ..., y_n)$$

where each Qy_i is either $\exists y_i$ or $\forall y_i$ and *P* is recursive. We call $Qy_1...Qy_n$ the <u>prefix</u> and $P(\vec{x}, y_1, ..., y_n)$ the <u>matrix</u> of the definition. We are chiefly interested in the prefix, since it measures how far the definition is from being recursive.

We shall first see how prefixes can be simplified. As z runs through all number, $(z)_0,(z)_1$ runs through all pairs of numbers. It follows that

and
$$\forall x \forall y R(x,y) \leftrightarrow \forall z R((z)_0,(z)_1)$$

 $\exists x \exists y R(x,y) \leftrightarrow \exists z R((z)_0,(z)_1).$

Using these equivalences, we can replace two adjacent universal quantifiers in a prefix by a single such quantifier, and similarly for existential quantifiers. For example, a definition