functions that we use will be the fact that it is recursively closed. This will enable us to prove in §9 that the class of recursive functions is the smallest recursively closed class.

6. Definitions of Recursive Functions

We are now going to show that certain kind of definitions of functions and relations always lead to recursive functions and relations. The simplest kind of definition of a function has the form $F(\vec{x}) \simeq$ ____, where _____ is an expression which, if defined, represents a number and which contains only previously defined symbols and variables from the sequence \hat{x} . Such a definition is called an explicit definition of F in terms of the symbols which appear in _____.

6.1. PROPOSITION. If F is defined explicitly in terms of variables and names of recursive functions, then F is recursive.

Proof. We suppose that F is defined by $F(\vec{x}) \simeq$ _____ and use induction on the number of symbols in _____. If _____ consists of just an x_i , then F is an I_i^k and hence is recursive. Otherwise, ______ is $G(X_1, ..., X_n)$ where Gis recursive. By the induction hypothesis, we may define a recursive function H_i by $H_i(\vec{x}) \simeq X_i$. Then

$$F(\vec{x}) \simeq G(H_1(\vec{x}), \dots, H_n(\vec{x}));$$

so F is recursive by 5.2. \square

The simplest type of definition of a relation has the form $R(\vec{x}) \leftarrow \underline{\qquad}$ where ______ is a statement containing only previously defined symbols and variables from the sequence \vec{x} . In order to make sure that this defines a relation, we insist that _____ be defined for all values of \vec{x} . We call such a definition an <u>explicit</u> definition of R in terms of whatever symbols appear in _____.

6.2. PROPOSITION. If R is defined explicitly in terms of variables and names of recursive functions and relations, then R is recursive.

Proof. The definition must be $R(\vec{x}) \leftrightarrow Q(X_1,...,X_n)$, where Q is a