§1 Differential Algebra.

Throughout these notes ring will mean commutative ring with identity.

A derivation on a ring \(R \) is an additive homomorphism \(D : R \rightarrow R \) such that \(D(xy) =xD(y)+yD(x) \). A differential ring is a ring equipped with a derivation.

Derivations satisfy all of the usual rules for derivatives. Let \(D \) be a derivation on \(R \).

Lemma 1.1. For all \(x \in R \), \(D(x^n) = nx^{n-1}D(x) \).

Proof.

By induction on \(n \). \(\text{D}(x^1) = D(x) \).

\[
\text{D}(x^{n+1}) = \text{D}(xx^n) = x\text{D}(x^n) + x^n\text{D}(x) = nx^n\text{D}(x) + x^n\text{D}(x) = (n+1)x^n\text{D}(x).
\]

Lemma 1.2. If \(b \) is a unit of \(R \), \(D\left(\frac{a}{b}\right) = \frac{bD(a) - aD(b)}{b^2} \).

Proof.

\[
D(a) = D(b \cdot \frac{a}{b}) = bD\left(\frac{a}{b}\right) + \frac{a}{b}D(b).
\]

Thus \(D\left(\frac{a}{b}\right) = \frac{1}{b}D(a) - \frac{a}{b^2}D(b) = \frac{bD(a) - aD(b)}{b^2} \).

Examples.

1) (trivial derivation) \(D : R \rightarrow \{0\} \).

2) Let \(C^{\infty} \) be the ring of infinitely differentiable real functions on \((0,1)\) and let \(D \) be the usual derivative.

3) Let \(U \) be a nonempty connected open subset of \(\mathbb{C} \). Let \(O_U \) be the ring of analytic functions \(f : U \rightarrow \mathbb{C} \) and let \(D : O_U \rightarrow O_U \) be the usual derivative. [Note: \(O_U \) is an integral domain, while the ring of \(C^{\infty} \) functions is not.] Similarly the field of meromorphic functions on \(U \) is a differential field. In appendix A, we show that every countable differential field can be embedded into a field of germs of meromorphic functions.

4) Let \(a \in R \). Let \(D : R[X] \rightarrow R[X] \) by \(D(\sum a_iX^i) = a(\sum ia_iX^{i-1}) \). [Note: If \(a = 1 \), then \(D \) is \(\frac{d}{dX} \).]