Model Theory of Differential Fields David Marker

University of Illinois at Chicago

§1 Differential Algebra.

Throughout these notes ring will mean commutative ring with identity.

A derivation on a ring R is an additive homomorphism $D: R \to R$ such that D(xy) = xD(y) + yD(x). A differential ring is a ring equipped with a derivation.

Derivations satisfy all of the usual rules for derivatives. Let D be a derivation on R.

Lemma 1.1. For all $x \in R$, $D(x^n) = nx^{n-1}D(x)$.

Proof.

By induction on n. $D(x^1) = D(x)$.

$$D(x^{n+1}) = D(xx^n) = xD(x^n) + x^nD(x)$$

= $nx^nD(x) + x^nD(x)$
= $(n+1)x^nD(x)$.

Lemma 1.2. If b is a unit of R, $D(\frac{a}{b}) = \frac{bD(a)-aD(b)}{b^2}$.

Proof.

$$D(a) = D(b \cdot \frac{a}{b}) = bD(\frac{a}{b}) + \frac{a}{b}D(b).$$

Thus $D(\frac{a}{b}) = \frac{1}{b}D(a) - \frac{a}{b^2}D(b) = \frac{bD(a) - aD(b)}{b^2}.$

examples.

1) (trivial derivation) $D: R \to \{0\}$.

2) Let C^{∞} be the ring of infinitely differentiable real functions on (0, 1) and let D be the usual derivative.

3) Let U be a nonempty connected open subset of C. Let O_U be the ring of analytic functions $f: U \to C$ and let $D: O_U \to O_U$ be the usual derivative. [Note: O_U is an integral domain, while the ring of C^{∞} functions is not.] Similarly the field of meromorphic functions on U is a differential field. In appendix A, we show that every countable differential field can be embedded into a field of germs of meromorphic functions.

4) Let $a \in R$. Let $D: R[X] \to R[X]$ by $D(\sum a_i X^i) = a(\sum i a_i X^{i-1})$. [Note: If a = 1, then D is $\frac{d}{dX}$.]