A Bounded Arithmetic Theory for Constant Depth Threshold Circuits*

Jan Johannsen

IMMD 1, Universität Erlangen-Nürnberg, Germany email: johannsen@@informatik.uni-erlangen.de

Summary. We define an extension \bar{R}_2^0 of the bounded arithmetic theory R_2^0 and show that the class of functions Σ_1^b -definable in \bar{R}_2^0 coincides with the computational complexity class TC^0 of functions computable by polynomial size, constant depth threshold circuits.

1. Introduction

The theories S_2^i , for $i \in \mathbb{N}$, of Bounded Arithmetic were introduced by Buss [3]. The language of these theories is the language of Peano Arithmetic extended by symbols for the functions $\lfloor \frac{1}{2}x \rfloor$, $|x| := \lceil \log_2(x+1) \rceil$ and $x \# y := 2^{|x| \cdot |y|}$. A quantifier of the form $\forall x \leq t$, $\exists x \leq t$ with x not occurring in t is called a *bounded quantifier*. Furthermore, a quantifier of the form $\forall x \leq |t|$, $\exists x \leq |t|$ is called *sharply bounded*. A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.

The class of bounded formulae is divided into an hierarchy analogous to the arithmetical hierarchy: The class of sharply bounded formulae is denoted Σ_0^b or Π_0^b . For $i \in \mathbb{N}$, Σ_{i+1}^b (resp. Π_{i+1}^b) is the least class containing Π_i^b (resp. Σ_i^b) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification.

Now the theory S_2^i is defined by a finite set *BASIC* of quantifier-free axioms plus the scheme of *polynomial induction*

$$A(0) \land \forall x \left(A(\lfloor \frac{1}{2}x \rfloor) \to A(x) \right) \to \forall x A(x)$$

for every Σ_i^b -formula A(x) (Σ_i^b -PIND).

For a class of formulae Γ , a number-theoretic function f is said to be Γ -definable in a theory T if there is a formula $A(\bar{x}, y) \in \Gamma$, describing the graph of f in the standard model, and a term $t(\bar{x})$, such that T proves

$$\forall \bar{x} \exists y \leq t(\bar{x}) A(\bar{x}, y)$$

 $\forall \bar{x}, y_1, y_2 \ A(\bar{x}, y_1) \land A(\bar{x}, y_2) \rightarrow y_1 = y_2$

The main result of [3] relates the theories S_2^i to the Polynomial Time Hierarchy PH of Computational Complexity Theory (cf. [9]):

^{*} This paper is in its final form, and no version of it will be submitted for publication elsewhere