§6. An inductive definition of K

The definition of K given in 5.17 is $\Sigma_{\omega}(V_{\Omega+1})$, and therefore much too complicated for some purposes. In this section we shall give an inductive definition of K whose logical form is as simple as possible. Assuming that K^c has no Woodin cardinals, we shall show that $K \cap HC$ is $\Sigma_1(L_{\omega_1}(\mathbb{R}))$ in the codes; Woodin has shown that in general no simpler definition is possible.

The following notion is central to our inductive definition of K.

Definition 6.1. Let \mathcal{M} be a proper premouse such that $\mathcal{M} \models ZF - \{Powerset\}$ and $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound. We say \mathcal{M} is (α, S) -strong iff there is an $(\omega, \Omega+1)$ iterable weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and whenever W is a weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and Σ is an $(\omega, \Omega+1)$ iteration strategy for W, then there is a length $\theta + 1$ iteration tree T on W which is a play by Σ and such that $\forall \gamma < \theta(\nu(E_{\gamma}^{T}) \geq \alpha)$, and a $Q \leq W_{\theta}^{T}$, and a fully elementary $\pi: \mathcal{M} \to Q$ such that $\pi \upharpoonright \alpha = identity$.

We shall see that it is possible to define " (α, S) -strong" by induction on α . First, let us notice:

Lemma 6.2. Let W be an $(\omega, \Omega + 1)$ iterable weasel which witnesses that \mathcal{J}^W_{α} is S-sound; then W is (α, S) strong.

Proof. Let R be a weasel which witnesses \mathcal{J}^W_{α} is S-sound, and let Σ be an $\Omega+1$ iteration strategy for R. Let Γ be an $\Omega+1$ iteration strategy for W, and let $(\mathcal{T}, \mathcal{U})$ be the successful conteration of R with W determined by (Σ, Γ) . Let Q be the common last model of \mathcal{T} and \mathcal{U} , and let $\pi : W \to Q$ be the iteration map given by \mathcal{U} . By Lemma 5.1, $\pi \upharpoonright \alpha = \text{identity.}$

Lemma 6.2 admits the following slight improvement. Let W witness that \mathcal{J}_{α}^{W} is S-sound, and let Σ be an $(\omega, \Omega + 1)$ iteration strategy for W. Let \mathcal{T} be an iteration tree played by Σ such that $\forall \gamma < \theta(\nu(E_{\gamma}^{T}) \ge \alpha)$, where $\theta + 1 = lh \mathcal{T}$; then $W_{\theta}^{\mathcal{T}}$ is (α, S) strong. [Proof: Let R be any weasel witnessing \mathcal{J}_{α}^{W} is S-sound. Comparing R with W, we get an iteration tree \mathcal{U} on R and a map $\pi: W \to R_{\eta}^{\mathcal{U}}$, where $\eta = lh \mathcal{U} - 1$. By 5.1, $\operatorname{crit}(\pi) \ge \alpha$. Let $\sigma: W_{\theta}^{\mathcal{T}} \to (R_{\eta}^{\mathcal{U}})_{\theta}^{\pi\mathcal{T}}$ be the copy map. Then σ and $\mathcal{U} \cap \pi\mathcal{T}$ are as required in 6.1 for R.] This shows that we obtain a definition of (α, S) strength equivalent to 6.1 if we replace "whenever W is a weasel" by "there is a weasel W" in 6.1. It also shows that there are (α, S) strong weasels other than those described in 6.2. For example, suppose W witnesses that \mathcal{J}_{α}^{W} is S-sound, and E is an extender on the W sequence which is total on W and such that $\operatorname{crit}(E) < \alpha \le \nu(E)$. Setting $R = \operatorname{Ult}(W, E)$, we have that R is (α, S) strong, but R does not witness that \mathcal{J}_{α}^{R} is S-sound.

In view of the fact that K(S) is independent of S, one might expect the same to be true of (α, S) -strength. This is indeed the case.