7. Canonization for Two Variables

In this chapter we prove that both $L^2_{\infty\omega}$ and $C^2_{\infty\omega}$ admit PTIME canonization. We do so by exhibiting PTIME inverses for I_{L^2} and I_{C^2} . The inversion for I_{L^2} is even PTIME in terms of the size of the I_{L^2} , a phenomenon that we know to be peculiar to the two variable case. These are the main theorems:

Theorem 7.1. I_{L^2} admits PTIME inversion in the strong sense that for each finite relational τ there is a PTIME functor $F: \{I_{L^2}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{fin}[\tau]\} \to$ stan[τ], which is an inverse for I_{L^2} :

$$\forall \mathfrak{A} \quad F(I_{L^2}\mathfrak{A}) \equiv^{L^2} \mathfrak{A}.$$

It follows that

- (i) the range of I_{L^2} can be recognized in PTIME.
- (ii) $L^2_{\infty\omega}$ admits PTIME canonization.
- (iii) $\operatorname{PTIME} \cap L^2_{\infty\omega}$ is recursively enumerable (has a recursive presentation). (iv) $\operatorname{PTIME} \cap L^2_{\infty\omega} \equiv \operatorname{FP}(I_{L^2}) \equiv \operatorname{PTIME}(I_{L^2}).$

Compare the general Theorems 6.11 and 6.14 for (ii) and (iii). (i) is obvious: for \mathfrak{I} of the format of an L^2 -invariant, $\mathfrak{I} \in \{I_{L^2}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{fin}[\tau]\}$ if and only if $F(\mathfrak{I}) \in \operatorname{fin}[\tau]$ and $I_{L^2}(F(\mathfrak{I})) = \mathfrak{I}$. (i) and the strong form of (iv) (if compared to the statement of Theorem 6.14) are consequences of polynomiality of F in the usual sense.

Theorem 7.2. I_{C^2} admits PTIME inversion. For each finite relational τ there is a PTIME functor $F: \{I_{C^2}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{fin}[\tau]\} \to \operatorname{stan}[\tau], \text{ which is an }$ inverse for I_{C^2} :

$$\forall \mathfrak{A} \quad F(I_{C^2}\mathfrak{A}) \equiv^{C^2} \mathfrak{A}.$$

It follows that

- (i) the range of I_{C^2} can be recognized in PTIME.
- (ii) $C^2_{\infty\omega}$ admits PTIME canonization. (iii) PTIME $\cap C^2_{\infty\omega}$ is recursively enumerable (has a recursive presentation). (iv) PTIME $\cap C^2_{\infty\omega} \equiv \operatorname{FP}(I_{C^2}) \equiv \operatorname{PTIME}(I_{C^2}).$