7. DEGREES OF INTERPRETABILITY

Suppose PA \dashv T. We shall use A, B, etc. for extensions of T. (Thus, T, A, B, etc. are essentially reflexive.) The relation \leq of interpretability is reflexive and transitive. Thus, the relation \equiv of mutual interpretability (restricted to extensions of T) is an equivalence relation; its equivalence classes will be called *degrees* (*of interpretability*) and will be written a, b, c, etc. D_T is the set of degrees of extensions of T. A is of degree a if A \in a and d(A) is the degree of A. The relation \leq among degrees is the relation induced by the relation \leq among theories: d(A) \leq d(B) iff A \leq B. D_T = (D_T, \leq), the partially ordered set of degrees defined in this way, will be studied in some detail in this chapter.

§1. Algebraic properties. In this § we restrict ourselves to purely algebraic properties of D_T . First we define the theory A^T and the operations \downarrow and \uparrow on theories as follows.

$$\begin{split} A^{T} &= T + \{ Con_{A \mid k} : k \in N \}, \\ A \downarrow B &= T + \{ Con_{A \mid k} \lor Con_{B \mid k} : k \in N \}, \\ A^{\uparrow}B &= T + \{ Con_{A \mid k} \land Con_{B \mid k} : k \in N \}. \end{split}$$

From Lemma 6.2 and Theorem 6.6, we get the following:

Lemma 1. (a) $A \le B$ iff $A^T \dashv B$. Thus, $A^T \equiv A$ and $A \le B$ iff $A^T \dashv B^T$. (b) $A \le B$, C iff $A \le B \downarrow C$, (c) A, B $\le C$ iff $A \uparrow B \le C$.

The following lemma is little more than a restatement of Lemma 4.4.

Lemma 2. If θ is Π_1 and $A \vdash \theta$, there is a k such that $PA \vdash Con_{A \mid k} \rightarrow \theta$.

Instead of $A \downarrow B$ it is sometimes convenient to use the theory $A \lor B$ defined by $A \lor B = \{ \varphi \lor \psi : \varphi \in A \& \psi \in B \}.$

Th(A∨B) = Th(A) ∩ Th(B). Evidently, A↓B ⊢ A∨B and, by Lemma 2, A∨B ⊢_{Π1}A↓B. But then, by Theorem 6.6, that A∨B ≤ A↓B and so A∨B = A↓B. It follows that for every sentence φ , (A + φ)↓(A + $\neg \varphi$) ≤ A.

From Lemma 2 and Lemma 6.1 we get:

Lemma 3. For every Π_1 sentence π , $T + \pi \le A \uparrow B$ iff $A \uparrow B \vdash \pi$ iff there are Π_1 sentences φ , ψ such that $A \vdash \varphi$, $B \vdash \psi$, and $T + \varphi \land \psi \vdash \pi$.

For A \in a and B \in b, let a \cap b = d(A \downarrow B) and a \cup b = d(A \uparrow B). By Lemma 1, \cap and \cup