4. AXIOMATIZATIONS

S is an *axiomatization* of T if SHET. Suppose SH T. S + X is an *axiomatization of* T *over* S if X is r.e. and THE S + X. In this chapter we discuss some important properties of axiomatizations: finiteness, boundedness, and irredundance.

§1. Finite and bounded axiomatizability; reflection principles. We shall say that T is a *finite extension of* S if there is a sentence φ such that $T \dashv \vdash S + \varphi$. T is *essentially infinite over* S if no consistent extension of T is finite over S. T is *essentially infinite* if T is essentially infinite over the empty theory (logic). We already know that PA is essentially infinite (Corollary 2.1).

By the local reflection principle for S we understand the set

Rfn_S = { $\Pr_{S}(\phi) \rightarrow \phi: \phi \text{ any sentence of } L_{A}$ }.

Thus, Rfn_S is a piecemeal (local) way of saying that every sentence provable in S is true. (The latter statement, the full (global) reflection principle for S, cannot be expressed in T, since, by the Gödel–Tarski theorem, truth is not definable.)

Clearly PA + Rfn_T \vdash Con_T (let $\varphi := \bot$). Also note that T is essentially reflexive iff T \vdash Rfn_{T $\downarrow k$} for every k (cf. Corollary 1.9 (b)).

We now use the local reflection principle to construct an essentially infinite extension of a given theory S. Note that $Rfn_S \dashv T$ implies $S \dashv T$.

Theorem 1. If $Rfn_S \dashv T$, then T is essentially infinite over S.

Proof. Suppose $T\dashv S + \theta$. We are going to show that $S + \theta$ is inconsistent. Let ψ be such that

(1) $Q \vdash \psi \leftrightarrow \neg \Pr_{S+\theta}(\psi).$

By hypothesis,

 $T \vdash \Pr_{S}(\theta \rightarrow \psi) \rightarrow (\theta \rightarrow \psi).$

From this and (1) it follows that $T\vdash \theta \rightarrow \psi$. But then

(2) $S + \theta \vdash \psi$.

It follows that $Q \vdash \Pr_{S+\theta}(\psi)$ and so, by (1), $Q \vdash \neg \psi$. But $Q \dashv S + \theta$ and so, by (2), $S + \theta$ is inconsistent.

If PA + T, the conclusion of Theorem 1 can be strengthened; see Corollary 2, below.

There is a stronger principle, the *uniform reflection principle*, which is a better approximation than Rfn_S of the full reflection principle for S, namely,

 $RFN_{S} = \{ \forall x (\Gamma(x) \land Pr_{S}(x) \rightarrow Tr_{\Gamma}(x)) : \Gamma \text{ arbitrary} \}.$

Clearly T + $RFN_S \vdash Rfn_S$ provided that PA \dashv T. Applying the uniform reflection principle we can derive a stronger conclusion than in Theorem 1.

A set X of sentences is *bounded* if $X \subseteq \Gamma$ for some Γ . Let $Prf_{S,\Gamma}(x,y) :=$