2. INCOMPLETENESS

The methods of arithmetization and self-reference were originally used to prove incompleteness theorems for arithmetical theories. In this chapter we present the most important theorems of this type.

A sentence φ (in the language of S) is *undecidable* in S if S $\nvDash \varphi$ and S $\nvDash \neg \varphi$. S is *complete* if no sentence is undecidable in S, otherwise *incomplete*.

§1. Incompleteness. We begin with the first and most important result of the whole subject, Gödel's incompleteness theorem (for theories in L_A).

Theorem 1. Let φ be a Π_1 sentence such that (G) $Q \vdash \varphi \leftrightarrow \neg \Pr_T(\varphi)$. Then φ is true and $T \nvDash \varphi$. Thus, if T is Σ_1 -sound, then also $T \nvDash \neg \varphi$.

Proof. Suppose $T \vdash \varphi$. Then, by Fact 7 (b), $Q \vdash \Pr_T(\varphi)$. But then, by (G), $Q \vdash \neg \varphi$ and so $T \vdash \neg \varphi$. It follows that T is inconsistent, contrary to Convention 2. Thus, $T \nvDash \varphi$. By (G), φ is true. Thus, $\neg \varphi$ is a false Σ_1 sentence and so $T \nvDash \neg \varphi$ if T is Σ_1 -sound.

Notice the close similarity between the proofs of Theorem 1, Lemma 1.2, and Theorem 1.3 (the liar paradox).

To derive the conclusion that $T \nvDash \neg \varphi$ in Theorem 1, we needed the assumption that T is Σ_1 -sound. We can now see that this is stronger than mere consistency: T + $\neg \varphi$ is consistent but not Σ_1 -sound. (Note that it does not follow from Theorem 1 that T + $\neg \varphi$ is incomplete.) Thus, the question arises if, assuming consistency only, there is a (Π_1) sentence which is undecidable in T. Our next result, known as Rosser's theorem, shows that the answer is affirmative.

Theorem 2. Let θ be a Π_1 sentence such that (R) $Q \vdash \theta \leftrightarrow \forall z(Prf_T(\theta, z) \rightarrow \exists u \leq zPrf_T(\neg \theta, u)).$ Then θ is undecidable in T.

Proof. We first prove that $T \nvDash \theta$. Suppose, for *reductio ad absurdum*, $T \vdash \theta$ and let p be a proof of θ in T. Then, by Fact 7 (a),

(1) $Q \vdash Prf_T(\theta, p)$.

Since T is consistent, we have $T \nvDash \neg \theta$. By Fact 7 (d), $Q \vdash \neg Prf_T(\neg \theta, q)$ for every q. But then, by Fact 1 (iv),

 $\mathbf{Q}\vdash \mathbf{u} \leq \mathbf{p} \rightarrow \neg \mathrm{Prf}_{\mathbf{T}}(\neg \mathbf{\theta}, \mathbf{u}).$

Combining this with (1) we get

Q⊢ $\exists z(\Prf_T(\theta,z) \land \forall u \leq z \neg \Prf_T(\neg \theta,u)).$

But then, by (R), $Q \vdash \neg \theta$ and so $T \vdash \neg \theta$, a contradiction. Thus, $T \nvDash \theta$ as desired.