Arithmetizing proofs in analysis

Ulrich Kohlenbach

1 Introduction

In this paper we continue our investigations started in [15] and [16] on the question:

What is the impact on the growth of extractable uniform bounds the use of various analytical principles Γ in a given proof of an $\forall \exists$ -sentence might have?

To be more specific, we are interested in analyzing proofs of sentences having the form

(1)
$$\forall u^1, k^0 \forall v \leq_{\rho} tuk \exists w^0 A_0(u, k, v, w),$$

where A_0 is a quantifier-free formula² (containing only u, k, v, w as free variables) in the language of a suitable subsystem \mathcal{T}^{ω} of arithmetic in all finite types, t is a closed term and \leq_{ρ} is defined pointwise (ρ being an arbitrary finite type).

From a proof of (1) carried out in \mathcal{T}^{ω} one can extract an effective uniform bound $\Phi u k$ on $\exists w$, i.e.

(2)
$$\forall u^1, k^0 \forall v \leq_{\rho} tuk \exists w \leq_0 \Phi uk A_0(u, k, v, w),$$

where the complexity (and in particular the growth) of Φ is limited by the complexity of the system \mathcal{T}^{ω} (see [13],[15]).

By the predicate 'uniform' we refer to the fact that the bound Φ does not depend on $v \leq_{\rho} tuk$.

In [13] we have discussed in detail, how sentences (1) arise naturally in analysis and why such uniform bounds are of numerical interest (e.g. in the context of approximation theory).

¹Received September 96; revised version February 97.

²Throughout this paper A_0, B_0, C_0, \ldots always denote quantifier-free formulas.