Some recent results on representations of *p*-adic special orthogonal groups

Jean-Loup Waldspurger

1. Motivation and results

1.1. Global motivation. Let V be a vector space over \mathbb{Q} , of finite dimension d, and let q be a non-degenerate quadratic form on V. We suppose given an orthogonal decomposition $V = D \oplus W$, where D is a line. Denote by G, resp. H, the special orthogonal group of V, resp. W. The group H is a subgroup of G, it is the subgroup of elements which act by identity on D. We assume, for instance, d even, and, to simplify, $d \ge 4$.

Denote by \mathbb{A} the ring of adeles of \mathbb{Q} . The group $G(\mathbb{A})$ acts by right translations on the space $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))$ of square-integrable functions on $G(\mathbb{Q})\backslash G(\mathbb{A})$. Consider a closed subspace $\mathcal{V} \subset L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))$, invariant by $G(\mathbb{A})$, such that the representation π of $G(\mathbb{A})$ on \mathcal{V} is irreducible (there is no closed invariant subspace distinct from \mathcal{V} and $\{0\}$). Such representation π is called automorphic of the discrete spectrum. The quotient $G(\mathbb{Q})\backslash G(\mathbb{A})$ is not compact in general, but we can define the notion of "rapid decay" for a function on $G(\mathbb{Q})\backslash G(\mathbb{A})$. Assume that the subset \mathcal{V}^0 of elements of rapid decay of \mathcal{V} is dense in \mathcal{V} . Then we say that π is cuspidal. Let π be such automorphic cuspidal irreducible representation of $G(\mathbb{A})$ on a subspace $\mathcal{V} \subset L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))$. Similarly, let σ be an automorphic cuspidal irreducible representation of $H(\mathbb{A})$ on a subspace $\mathcal{W} \subset L^2(H(\mathbb{Q})\backslash H(\mathbb{A}))$. For $\varphi \in \mathcal{V}^0$ and $\psi \in \mathcal{W}^0$, we define the integral

$$J(\psi,\varphi) = \int_{H(\mathbb{Q}) \setminus H(\mathbb{A})} \overline{\psi(h)} \varphi(h) \, dh.$$

It is absolutely convergent and define a sesquilinear form J on $\mathcal{W}^0 \times \mathcal{V}^0$. A conjecture of Gross and Prasad ([GP], conjecture 14.8) says (in particular) that, if this sesquilinear form is non-zero, then a special value of some L-function is non-zero. What is this L-function? Of course, the notion of automorphic representation of the discrete spectrum is defined for all reductive groups over \mathbb{Q} (some minor modifications are needed when the

© 2011 International Press